コード例 #1
0
def _data_aug_fn(image, ground_truth):
    """Data augmentation function."""
    ground_truth = cPickle.loads(ground_truth)
    ground_truth = list(ground_truth)

    annos = ground_truth[0]
    mask = ground_truth[1]
    h_mask, w_mask, _ = np.shape(image)
    # mask
    mask_miss = np.ones((h_mask, w_mask), dtype=np.uint8)

    for seg in mask:
        bin_mask = maskUtils.decode(seg)
        bin_mask = np.logical_not(bin_mask)
        mask_miss = np.bitwise_and(mask_miss, bin_mask)

    ## image data augmentation
    # randomly resize height and width independently, scale is changed
    image, annos, mask_miss = keypoint_random_resize(image,
                                                     annos,
                                                     mask_miss,
                                                     zoom_range=(0.8, 1.2))
    # random rotate
    image, annos, mask_miss = keypoint_random_rotate(image,
                                                     annos,
                                                     mask_miss,
                                                     rg=15.0)
    # random left-right flipping
    image, annos, mask_miss = keypoint_random_flip(image,
                                                   annos,
                                                   mask_miss,
                                                   prob=0.5)
    # random resize height and width together
    image, annos, mask_miss = keypoint_random_resize_shortestedge(
        image, annos, mask_miss, min_size=(hin, win), zoom_range=(0.95, 1.6))
    # random crop
    image, annos, mask_miss = keypoint_random_crop(image,
                                                   annos,
                                                   mask_miss,
                                                   size=(hin,
                                                         win))  # with padding

    # generate result maps including keypoints heatmap, pafs and mask
    h, w, _ = np.shape(image)
    height, width, _ = np.shape(image)
    heatmap = get_heatmap(annos, height, width)
    vectormap = get_vectormap(annos, height, width)
    resultmap = np.concatenate((heatmap, vectormap), axis=2)

    image = np.array(image, dtype=np.float32)

    img_mask = mask_miss.reshape(hin, win, 1)
    image = image * np.repeat(img_mask, 3, 2)

    resultmap = np.array(resultmap, dtype=np.float32)
    mask_miss = cv2.resize(mask_miss, (hout, wout),
                           interpolation=cv2.INTER_AREA)
    mask_miss = np.array(mask_miss, dtype=np.float32)
    return image, resultmap, mask_miss
コード例 #2
0
    def _data_aug_fn(image, annos, mask_miss):
        ## image data augmentation
        # randomly resize height and width independently, scale is changed
        image, annos, mask_miss = keypoint_random_resize(image,
                                                         annos,
                                                         mask_miss,
                                                         zoom_range=(0.8, 1.2))
        # random rotate
        image, annos, mask_miss = keypoint_random_rotate(image,
                                                         annos,
                                                         mask_miss,
                                                         rg=15.0)
        # random left-right flipping
        image, annos, mask_miss = keypoint_random_flip(image,
                                                       annos,
                                                       mask_miss,
                                                       prob=0.5)
        # random resize height and width together
        image, annos, mask_miss = keypoint_random_resize_shortestedge(
            image,
            annos,
            mask_miss,
            min_size=(hin, win),
            zoom_range=(0.95, 1.6))
        # random crop
        image, annos, mask_miss = keypoint_random_crop(
            image, annos, mask_miss, size=(hin, win))  # with padding

        # generate result maps including keypoints heatmap, pafs and mask
        h, w, _ = np.shape(image)
        height, width, _ = np.shape(image)
        heatmap = get_heatmap(annos, height, width)
        vectormap = get_vectormap(annos, height, width)
        resultmap = np.concatenate((heatmap, vectormap), axis=2)

        image = np.array(image, dtype=np.float32)

        img_mask = mask_miss.reshape(hin, win, 1)
        image = image * np.repeat(img_mask, 3, 2)

        resultmap = np.array(resultmap, dtype=np.float32)
        mask_miss = cv2.resize(mask_miss, (hout, wout),
                               interpolation=cv2.INTER_AREA)
        mask_miss = np.array(mask_miss, dtype=np.float32)
        return image, resultmap, mask_miss