コード例 #1
0
    def rotate2full(self, mat, error=False):
        """
        Rotate a prediction back into full-rank space (i.e. bin space)

        :param mat: Tensor in low-rank space
        :param error: Is this a tensor of uncertainties? [default = False]

        :return full_rank: Full rank prediction
        """
        if self.unitCore is not None:
            tmp_mat = mat * self.coreStd
        else:
            tmp_mat = mat

        full_rank = tlb.to_numpy(
            tl.tenalg.multi_mode_dot(tl.tensor(tmp_mat),
                                     self.factors,
                                     modes=[0, 1],
                                     transpose=False))

        if self.unitMat is not None:
            full_rank += self.pixMean
            if error:
                full_rank -= self.pixMean

        return full_rank
コード例 #2
0
    def basisCompute(self):
        """
        PCA compression of simulation data.

        :return pca_basis: Matrix with columns as orthogonal basis vectors
        :return pca_weights: Coefficients of basis vectors at simulation points
        """
        X = tl.tensor(self.unitMat)

        self.core, self.factors = tld.partial_tucker(
            X[:, :, :],
            modes=[0, 1],
            tol=self.tol,
            ranks=[self.user_dim, self.user_dim2])
        self.core = tlb.to_numpy(self.core)
コード例 #3
0
ファイル: testing.py プロジェクト: zhangyaqian0701/tensorly
def assert_array_equal(a, b, *args, **kwargs):
    np.testing.assert_array_equal(T.to_numpy(a), T.to_numpy(b), *args,
                                  **kwargs)
コード例 #4
0
ファイル: testing.py プロジェクト: zhangyaqian0701/tensorly
 def _tensor_to_numpy(x):
     if T.is_tensor(x):
         x = T.to_numpy(x)
         return x[0] if x.shape == (1, ) else x
     return x
コード例 #5
0
for i, pattern in enumerate(patterns):

    # Generate the original image
    weight_img = gen_image(region=pattern,
                           image_height=image_height,
                           image_width=image_width)
    weight_img = T.tensor(weight_img)

    # Generate the labels
    y = T.dot(partial_tensor_to_vec(X, skip_begin=1),
              tensor_to_vec(weight_img))

    # Plot the original weights
    ax = fig.add_subplot(n_rows, n_columns, i * n_columns + 1)
    ax.imshow(T.to_numpy(weight_img),
              cmap=plt.cm.OrRd,
              interpolation='nearest')
    ax.set_axis_off()
    if i == 0:
        ax.set_title('Original\nweights')

    for j, rank in enumerate(ranks):

        # Create a tensor Regressor estimator
        estimator = KruskalRegressor(weight_rank=rank,
                                     tol=10e-7,
                                     n_iter_max=100,
                                     reg_W=1,
                                     verbose=0)
コード例 #6
0
def model_inference_category(option):
    option.folderName = str(input('Please type in the folder name:'))
    if not os.path.exists('./' + option.folderName):
        os.makedirs('./' + option.folderName)

    if option.model_name == '7':
        y_train_predicted = option.fitted_final.predict(option.X_train)
        y_test_predicted = option.fitted_final.predict(option.X_test)
        option.train_residual = y_train_predicted - option.y_train
        option.test_residual = y_test_predicted - option.y_test
        option.rmse_train_final = sqrt(
            mean_squared_error(option.y_train, y_train_predicted))
        option.rmse_test_final = sqrt(
            mean_squared_error(option.y_test, y_test_predicted))
        res = sum(np.square(option.y_train - y_train_predicted))
        tot = sum(np.square(option.y_train - np.mean(option.y_train)))
        n = len(option.y_train)
        p = 1
        option.rsquared = 1 - res / tot
        option.adj_rsquared = 1 - ((res / (n - p - 1)) / (tot / (n - 1)))
        for i in range(option.y_train.shape[1]):

            plt.figure(1)
            plt.title('Residual Plot for Resistance')

            plt.subplot(221)
            plt.plot(y_train_predicted[:, i], option.train_residual[:, i],
                     'ro')
            plt.xlabel('Predicted')
            plt.ylabel('Residual')

            plt.subplot(222)
            plt.plot(option.train_residual[:, i][0:-2],
                     option.train_residual[:, i][1:-1], 'ro')
            plt.xlabel('Residual Lag 1')
            plt.ylabel('Residual')

            plt.subplot(223)
            plt.hist(option.train_residual[:, i], bins='auto')
            plt.xlabel('Residual')
            plt.ylabel('Frequency')

            plt.subplot(224)
            if (0 in np.nditer(np.std(option.train_residual[:, i]))):
                z = option.train_residual[:, i]
            else:
                z = (option.train_residual[:, i] -
                     np.mean(option.train_residual[:, i])) / np.std(
                         option.train_residual[:, i])
            stats.probplot(z, dist="norm", plot=plt)

            plt.xlabel('Standard Quantile')
            plt.ylabel('Residual Quantile')
            plt.tight_layout()

            plt.savefig('./' + option.folderName + '/residual_plot' + str(i) +
                        '.png')
            plt.close()

        plt.figure(2)
        plt.title('Parameter Tuning Plot')
        plt.scatter(option.candidate_lambda, option.corresponding_rmse_mean)
        plt.xlabel('Candidate Lambda')
        if option.model_name not in ['6', '13']:
            plt.ylabel('Root Mean Squared Error')
        else:
            plt.ylabel('Accuracy')
        plt.savefig('./' + option.folderName + '/parameter_tuning_plot.png')
        plt.close()

    elif option.model_name == '8':
        y_train_predicted = option.fitted_final.evaluate(option.X_train,
                                                         option.y_train,
                                                         batch_size=32,
                                                         verbose=1,
                                                         sample_weight=None)
        y_test_predicted = option.fitted_final.evaluate(option.X_test,
                                                        option.y_test,
                                                        batch_size=32,
                                                        verbose=1,
                                                        sample_weight=None)
        print()
        print("Loss = " + str(y_test_predicted[0]))
        print("Test Accuracy = " + str(y_test_predicted[1]))

        accuracy = option.fitted_final.history.history['acc']
        val_accuracy = option.fitted_final.history.history['val_acc']
        loss = option.fitted_final.history.history['loss']
        val_loss = option.fitted_final.history.history['val_loss']
        epochs = range(len(accuracy))

        plt.plot(epochs, accuracy, 'bo', label='Training accuracy')
        plt.plot(epochs, val_accuracy, 'b', label='Validation accuracy')
        plt.title('Training and validation accuracy')
        plt.legend()
        plt.savefig('./' + option.folderName + '/accuracy_plot.png')
        plt.close()

        plt.figure()
        plt.plot(epochs, loss, 'bo', label='Training loss')
        plt.plot(epochs, val_loss, 'b', label='Validation loss')
        plt.title('Training and validation loss')
        plt.legend()

        plt.savefig('./' + option.folderName + '/loss_plot.png')
        plt.close()
    elif option.model_name == '11':
        #true regression weight
        n_rows = 1
        n_columns = option.max_rank + 1
        fig = plt.figure()
        ax = fig.add_subplot(n_rows, n_columns, 1)
        ax.imshow(T.to_numpy(option.weight_img),
                  cmap=plt.cm.OrRd,
                  interpolation='nearest')
        ax.set_axis_off()
        ax.set_title('Original\nweights')
        y_train_predicted = option.fitted_final.predict(option.X_train)

        for j in range(option.max_rank):

            #Visualise the learned weights
            ax = fig.add_subplot(n_rows, n_columns, j + 2)
            ax.imshow(T.to_numpy(option.fitted_final_weights[j]),
                      cmap=plt.cm.OrRd,
                      interpolation='nearest')
            ax.set_axis_off()
            ax.set_title('Learned\nrank = {}'.format(j + 1))

        plt.suptitle(option.tensorReg_name)
        plt.savefig('./' + option.folderName +
                    '/Learned_regression_weights.png')
        plt.close()

    elif option.model_name == '12':
        Z_train_predicted = option.fitted_final.predict(
            option.X_train)['z_predicted']
        Z_test_predicted = option.fitted_final.predict(
            option.X_test)['z_predicted']

        option.Z_train = option.Z_train.T[0]
        option.Z_test = option.Z_test.T[0]

        print('Z_test' + str(type(option.Z_test)) + str(option.Z_test))
        print('Z_test_predicted' + str(type(Z_test_predicted)) +
              str(Z_test_predicted))

        option.train_residual = Z_train_predicted - option.Z_train
        option.test_residual = Z_test_predicted - option.Z_test
        option.rmse_train_final = sqrt(
            mean_squared_error(option.Z_train, Z_train_predicted))
        option.rmse_test_final = sqrt(
            mean_squared_error(option.Z_test, Z_test_predicted))

        res = sum(np.square(option.Z_train - Z_train_predicted))
        tot = sum(np.square(option.Z_train - np.mean(option.Z_train)))

        n = len(option.Z_train)
        p = len(option.X_train[0])

        option.rsquared = 1 - res / tot
        option.adj_rsquared = 1 - ((res / (n - p - 1)) / (tot / (n - 1)))

        plt.figure(1)
        plt.title('Residual Plot for Resistance')

        plt.subplot(221)
        plt.plot(Z_train_predicted, option.train_residual, 'ro')
        plt.xlabel('Predicted')
        plt.ylabel('Residual')

        plt.subplot(222)
        plt.plot(option.train_residual[0:-2], option.train_residual[1:-1],
                 'ro')
        plt.xlabel('Residual Lag 1')
        plt.ylabel('Residual')

        plt.subplot(223)
        plt.hist(option.train_residual, bins='auto')
        plt.xlabel('Residual')
        plt.ylabel('Frequency')

        plt.subplot(224)

        z = (option.train_residual - np.mean(option.train_residual)) / np.std(
            option.train_residual)
        stats.probplot(z, dist="norm", plot=plt)

        plt.xlabel('Standard Quantile')
        plt.ylabel('Residual Quantile')
        plt.tight_layout()

        plt.savefig('./' + option.folderName + '/residual_plot.png')
        plt.close()

        plt.figure(2)
        plt.title('Parameter Tuning Plot')
        plt.scatter(option.candidate_lambda, option.corresponding_rmse_mean)
        plt.xlabel('Candidate Lambda')
        plt.ylabel('Root Mean Squared Error')
        plt.savefig('./' + option.folderName + '/parameter_tuning_plot.png')
        plt.close()

        print("goodness-of-fit: " + str(option.adj_rsquared))
        print("training rmse: " + str(option.rmse_train_final))
        print("testing rmse: " + str(option.rmse_test_final))
コード例 #7
0
def decomp_plot(edge_len=25,
                iterations=[1, 2, 3, 4],
                ranks=[1, 5, 25, 50, 125, 130, 150, 200],
                decomp='CP'):
    #Params
    print(ranks)

    #Generate random samples
    rng = check_random_state(7)
    X = T.tensor(rng.normal(size=(1000, edge_len, edge_len), loc=0, scale=1))

    #For plotting
    n_rows = len(iterations)
    n_columns = len(ranks) + 1

    fig = plt.figure()

    for i, _ in enumerate(iterations):
        #Generate tensor
        weight_img = X[i * edge_len:(i + 1) * edge_len, :, :]

        ax = fig.add_subplot(n_rows, n_columns, i * n_columns + 1)

        #Plot image corresponding to 3-D Tensor
        ax.imshow(T.to_numpy(np.sum(weight_img, axis=0)),
                  cmap=plt.cm.OrRd,
                  interpolation='nearest')
        ax.set_axis_off()
        if i == 0:
            ax.set_title('Original')

        for j, rank in enumerate(ranks):
            #Tensor decomposition, image_edge x rank (25x1, 25x5, 25x25 ...)

            if decomp == 'CP':
                #CP decomposition
                components = parafac(weight_img, rank=rank)

                ax = fig.add_subplot(n_rows, n_columns, i * n_columns + j + 2)
                # Aggregate the factors for visualization
                simg = np.sum(components[k] for k in range(len(components)))
                ax.imshow(T.to_numpy(simg),
                          cmap=plt.cm.OrRd,
                          interpolation='nearest')
                ax.text(.5,
                        2.0,
                        '{:.2f}'.format(
                            tensor_distance(kruskal_to_tensor(components),
                                            weight_img)),
                        color='r')
                # ax.set_autoscaley_on(False)
                ax.set_axis_off()
            else:
                #Tucker decomposition
                components, f = tucker(weight_img, ranks=[3, 25, rank])
                #print(components.shape)

                ax = fig.add_subplot(n_rows, n_columns, i * n_columns + j + 2)
                # Aggregate the factors for visualization
                simg = np.sum(components[k] for k in range(len(components)))
                ax.imshow(T.to_numpy(simg),
                          cmap=plt.cm.OrRd,
                          interpolation='nearest')
                ax.text(.5,
                        2.0,
                        '{:.2f}'.format(
                            tensor_distance(kruskal_to_tensor(components),
                                            weight_img)),
                        color='r')
                # ax.set_autoscaley_on(False)
                ax.set_axis_off()

            if i == 0:
                ax.set_title('\n{}'.format(rank))

    plt.suptitle('Tensor Decompositions')
    plt.show()