コード例 #1
0
def test_fuse_stride_arrays():
    dims = np.asarray([2, 3, 4, 5])
    strides = np.asarray([120, 60, 20, 5, 1])
    actual = fuse_stride_arrays(dims, strides)
    expected = fuse_ndarrays([
        np.arange(0, strides[n] * dims[n], strides[n], dtype=np.uint32)
        for n in range(len(dims))
    ])
    np.testing.assert_allclose(actual, expected)
コード例 #2
0
def reduce_charges(charges: List[BaseCharge],
                   flows: Union[np.ndarray, List[bool]],
                   target_charges: np.ndarray,
                   return_locations: Optional[bool] = False,
                   strides: Optional[np.ndarray] = None) -> Any:
  """
  Add quantum numbers arising from combining two or more charges into a
  single index, keeping only the quantum numbers that appear in 
  `target_charges`. Equilvalent to using "combine_charges" followed 
  by "reduce", but is generally much more efficient.
  Args:
    charges: List of `BaseCharge`, one for each leg of a 
      tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    target_charges: n-by-D array of charges which should be kept,
      with `n` the number of symmetries.
    return_locations: If `True` return the location of the kept
      values of the fused charges
    strides: Index strides with which to compute the
      retured locations of the kept elements. Defaults to trivial strides 
      (based on row major order).
  Returns:
    BaseCharge: the fused index after reduction.
    np.ndarray: Locations of the fused BaseCharge charges that were kept.
  """

  tensor_dims = [len(c) for c in charges]

  if len(charges) == 1:
    # reduce single index
    if strides is None:
      strides = np.array([1], dtype=SIZE_T)
    return charges[0].dual(flows[0]).reduce(
        target_charges, return_locations=return_locations, strides=strides[0])

  # find size-balanced partition of charges
  partition = _find_best_partition(tensor_dims)

  # compute quantum numbers for each partition
  left_ind = fuse_charges(charges[:partition], flows[:partition])
  right_ind = fuse_charges(charges[partition:], flows[partition:])

  # compute combined qnums
  comb_qnums = fuse_ndarray_charges(left_ind.unique_charges,
                                    right_ind.unique_charges,
                                    charges[0].charge_types)
  #special case of empty charges
  #pylint: disable=unsubscriptable-object
  if (comb_qnums.shape[0] == 0) or (len(left_ind.charge_labels) == 0) or (len(
      right_ind.charge_labels) == 0):
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(
        np.empty((0, charges[0].num_symmetries), dtype=charges[0].dtype),
        np.empty(0, dtype=charges[0].label_dtype), charges[0].charge_types)
    if return_locations:
      return obj, np.empty(0, dtype=SIZE_T)
    return obj

  unique_comb_qnums, comb_labels = np.unique(
      comb_qnums, return_inverse=True, axis=0)
  num_unique = unique_comb_qnums.shape[0]

  # intersect combined qnums and target_charges
  reduced_qnums, label_to_unique, _ = intersect(
      unique_comb_qnums, target_charges, axis=0, return_indices=True)
  map_to_kept = -np.ones(num_unique, dtype=charges[0].label_dtype)
  map_to_kept[label_to_unique] = np.arange(len(label_to_unique))
  # new_comb_labels is a matrix of shape
  # (left_ind.num_unique, right_ind.num_unique)
  # each row new_comb_labels[n,:] contains integers values.
  # Positions where values > 0
  # denote labels of right-charges that are kept.
  new_comb_labels = map_to_kept[comb_labels].reshape(
      [left_ind.num_unique, right_ind.num_unique])
  reduced_rows = [0] * left_ind.num_unique

  for n in range(left_ind.num_unique):
    temp_label = new_comb_labels[n, right_ind.charge_labels]
    reduced_rows[n] = temp_label[temp_label >= 0]

  reduced_labels = np.concatenate(
      [reduced_rows[n] for n in left_ind.charge_labels])
  obj = charges[0].__new__(type(charges[0]))
  obj.__init__(reduced_qnums, reduced_labels, charges[0].charge_types)

  if return_locations:
    row_locs = [0] * left_ind.num_unique
    if strides is not None:
      # computed locations based on non-trivial strides
      row_pos = fuse_stride_arrays(tensor_dims[:partition], strides[:partition])
      col_pos = fuse_stride_arrays(tensor_dims[partition:], strides[partition:])
    for n in range(left_ind.num_unique):
      temp_label = new_comb_labels[n, right_ind.charge_labels]
      temp_keep = temp_label >= 0
      if strides is not None:
        row_locs[n] = col_pos[temp_keep]
      else:
        row_locs[n] = np.where(temp_keep)[0]

    if strides is not None:
      reduced_locs = np.concatenate([
          row_pos[n] + row_locs[left_ind.charge_labels[n]]
          for n in range(left_ind.dim)
      ])
    else:
      reduced_locs = np.concatenate([
          n * right_ind.dim + row_locs[left_ind.charge_labels[n]]
          for n in range(left_ind.dim)
      ])
    return obj, reduced_locs

  return obj
コード例 #3
0
def test_find_transposed_diagonal_sparse_blocks(num_charges, order, D):
    order = list(order)
    num_legs = len(order)
    np.random.seed(10)
    np_charges = [
        np.random.randint(-5, 5, (num_charges, D), dtype=np.int16)
        for _ in range(num_legs)
    ]
    tr_charge_list = []
    charge_list = []
    for c in range(num_charges):

        tr_charge_list.append(
            fuse_ndarrays(
                [np_charges[order[n]][c, :] for n in range(num_legs)]))
        charge_list.append(
            fuse_ndarrays([np_charges[n][c, :] for n in range(num_legs)]))

    tr_fused = np.stack(tr_charge_list, axis=0)
    fused = np.stack(charge_list, axis=0)

    dims = [c.shape[1] for c in np_charges]
    strides = _get_strides(dims)
    transposed_linear_positions = fuse_stride_arrays(
        dims, [strides[o] for o in order])
    left_charges = np.stack([
        fuse_ndarrays(
            [np_charges[order[n]][c, :] for n in range(num_legs // 2)])
        for c in range(num_charges)
    ],
                            axis=0)
    right_charges = np.stack([
        fuse_ndarrays([
            np_charges[order[n]][c, :] for n in range(num_legs // 2, num_legs)
        ]) for c in range(num_charges)
    ],
                             axis=0)
    #pylint: disable=no-member
    mask = np.logical_and.reduce(fused.T == np.zeros((1, num_charges)), axis=1)
    nz = np.nonzero(mask)[0]
    dense_to_sparse = np.empty(len(mask), dtype=np.int64)
    dense_to_sparse[mask] = np.arange(len(nz))
    #pylint: disable=no-member
    tr_mask = np.logical_and.reduce(tr_fused.T == np.zeros((1, num_charges)),
                                    axis=1)
    tr_nz = np.nonzero(tr_mask)[0]
    tr_linear_locs = transposed_linear_positions[tr_nz]
    # pylint: disable=no-member
    left_inds, _ = np.divmod(tr_nz, right_charges.shape[1])
    left = left_charges[:, left_inds]
    unique_left = np.unique(left, axis=1)
    blocks = []
    for n in range(unique_left.shape[1]):
        ul = unique_left[:, n][None, :]
        #pylint: disable=no-member
        blocks.append(dense_to_sparse[tr_linear_locs[np.nonzero(
            np.logical_and.reduce(left.T == ul, axis=1))[0]]])

    charges = [
        BaseCharge(c, charge_types=[U1Charge] * num_charges)
        for c in np_charges
    ]
    flows = [False] * num_legs
    bs, cs, ss = _find_transposed_diagonal_sparse_blocks(
        charges, flows, tr_partition=num_legs // 2, order=order)
    np.testing.assert_allclose(cs.charges, unique_left)
    for b1, b2 in zip(blocks, bs):
        assert np.all(b1 == b2)

    assert np.sum(np.prod(ss, axis=0)) == np.sum([len(b) for b in bs])
    np.testing.assert_allclose(unique_left, cs.charges)