コード例 #1
0
def test_edge_initialize_raises_error_faulty_arguments(double_node_edge):
  node1 = double_node_edge.node1
  node2 = double_node_edge.node2
  with pytest.raises(ValueError):
    Edge(name="edge", node1=node1, node2=node2, axis1=0)
  with pytest.raises(ValueError):
    Edge(name="edge", node1=node1, axis1=0, axis2=0)
コード例 #2
0
def test_edge_magic_xor(double_node_edge):
  node1 = double_node_edge.node1
  node2 = double_node_edge.node2
  edge1 = Edge(name="edge1", node1=node1, axis1=2)
  edge2 = Edge(name="edge2", node1=node2, axis1=2)
  edge = edge1 ^ edge2
  assert edge.node1 == node1
  assert edge.node2 == node2
コード例 #3
0
def test_node_add_edge_raises_error_mismatch_rank(single_node_edge):
  node = single_node_edge.node
  edge = single_node_edge.edge
  with pytest.raises(ValueError):
    node.add_edge(edge, axis=-1)
  edge = Edge(name="edge", node1=node, axis1=0)
  with pytest.raises(ValueError):
    node.add_edge(edge, axis=3)
コード例 #4
0
def fixture_double_node_edge(backend):
  net = tensornetwork.TensorNetwork(backend=backend)
  tensor = net.backend.convert_to_tensor(np.ones((1, 2, 2)))
  node1 = Node(
      tensor=tensor,
      name="test_node1",
      axis_names=["a", "b", "c"],
      network=net,
      backend=backend)
  node2 = Node(
      tensor=tensor,
      name="test_node2",
      axis_names=["a", "b", "c"],
      network=net,
      backend=backend)
  net.connect(node1["b"], node2["b"])
  edge1 = Edge(name="edge", node1=node1, axis1=0)
  edge12 = Edge(name="edge", node1=node1, axis1=1, node2=node2, axis2=1)
  return DoubleNodeEdgeTensor(node1, node2, edge1, edge12, tensor)
コード例 #5
0
def test_node_reorder_edges_raise_error_wrong_edges(single_node_edge):
  node = single_node_edge.node
  e0 = node[0]
  e1 = node[1]
  e2 = node[2]
  edge = Edge(name="edge", node1=node, axis1=0)
  with pytest.raises(ValueError) as e:
    node.reorder_edges([e0])
  assert "Missing edges that belong to node found:" in str(e.value)
  with pytest.raises(ValueError) as e:
    node.reorder_edges([e0, e1, e2, edge])
  assert "Additional edges that do not belong to node found:" in str(e.value)
コード例 #6
0
def fixture_single_node_edge(backend):
  net = tensornetwork.TensorNetwork(backend=backend)
  tensor = np.ones((1, 2, 2))
  tensor = net.backend.convert_to_tensor(tensor)
  node = Node(
      tensor=tensor,
      name="test_node",
      axis_names=["a", "b", "c"],
      backend=backend,
      network=net)
  edge = Edge(name="edge", node1=node, axis1=0)
  return SingleNodeEdgeTensor(node, edge, tensor)
コード例 #7
0
def test_edge_load(tmp_path, double_node_edge):
  edge = double_node_edge.edge12

  with h5py.File(tmp_path / 'edge', 'w') as edge_file:
    edge_group = edge_file.create_group('edge_data')
    edge_group.create_dataset('signature', data=edge.signature)
    edge_group.create_dataset('name', data=edge.name)
    edge_group.create_dataset('node1', data=edge.node1.name)
    edge_group.create_dataset('node2', data=edge.node2.name)
    edge_group.create_dataset('axis1', data=edge.axis1)
    edge_group.create_dataset('axis2', data=edge.axis2)

    net = tensornetwork.TensorNetwork(backend=edge.node1.network.backend.name)
    ten = net.backend.convert_to_tensor(np.ones((1, 2, 2)))
    node1 = Node(
        tensor=2 * ten,
        name="test_node1",
        axis_names=["a", "b", "c"],
        network=net,
        backend=net.backend.name)
    node2 = Node(
        tensor=ten,
        name="test_node2",
        axis_names=["a", "b", "c"],
        network=net,
        backend=net.backend.name)
    loaded_edge = Edge._load_edge(edge_group, {
        node1.name: node1,
        node2.name: node2
    })
    assert loaded_edge.name == edge.name
    assert loaded_edge.signature == edge.signature
    assert loaded_edge.node1.name == edge.node1.name
    assert loaded_edge.node2.name == edge.node2.name
    assert loaded_edge.axis1 == edge.axis1
    assert loaded_edge.axis2 == edge.axis2
    np.testing.assert_allclose(loaded_edge.node1.tensor, node1.tensor)
    np.testing.assert_allclose(loaded_edge.node2.tensor, node2.tensor)
コード例 #8
0
    def batched_contract_between(
            self, node1: tensornetwork.Node, node2: tensornetwork.Node,
            batch_edge1: tensornetwork.Edge,
            batch_edge2: tensornetwork.Edge) -> tensornetwork.Node:
        """Contract between that supports one batch edge in each node.
    
    Uses einsum property: "bij,bjk->bik".
    
    Args:
      node1: First node to contract.
      node2: Second node to contract.
      batch_edge1: The edge of node1 that correspond to its batch index.
      batch_edge2: The edge of node2 that correspond to its batch index.
    
    Returns:
      new_node: Result of the contraction. This node has by default batch_edge1
        as its batch edge. Its edges are in the order of the dangling edges of
        node1 followed by the dangling edges of node2.
    """
        if node1 is node2:
            raise ValueError("Cannot perform batched contraction between "
                             "node '{}' and itself.".format(node1))

        shared_edges = self.get_shared_edges(node1, node2)
        if not shared_edges:
            raise ValueError("No edges found between nodes "
                             "'{}' and '{}'".format(node1, node2))

        if batch_edge1 in shared_edges:
            raise ValueError(
                "Batch edge '{}' is shared between the nodes".format(
                    batch_edge1))
        if batch_edge2 in shared_edges:
            raise ValueError(
                "Batch edge '{}' is shared between the nodes".format(
                    batch_edge2))

        n_shared = len(shared_edges)
        shared_subscripts = dict(
            zip(shared_edges, self._VALID_SUBSCRIPTS[:n_shared]))

        res_string, string = [], []
        index = n_shared + 1
        for node, batch_edge in zip([node1, node2],
                                    [batch_edge1, batch_edge2]):
            string.append([])
            for edge in node.edges:
                if edge in shared_edges:
                    string[-1].append(shared_subscripts[edge])
                elif edge is batch_edge:
                    string[-1].append(self._VALID_SUBSCRIPTS[n_shared])
                    if node is node1:
                        res_string.append(self._VALID_SUBSCRIPTS[n_shared])
                else:
                    string[-1].append(self._VALID_SUBSCRIPTS[index])
                    res_string.append(self._VALID_SUBSCRIPTS[index])
                    index += 1

        string1 = "".join(string[0])
        string2 = "".join(string[1])
        res_string = "".join(res_string)
        einsum_string = "".join([string1, ",", string2, "->", res_string])

        new_tensor = self.backend.einsum(einsum_string, node1.tensor,
                                         node2.tensor)
        new_node = self.add_node(new_tensor)

        # Modify batch edge 2 to avoid ValueError in remove
        batch_edge2.node2 = node1
        batch_edge2._is_dangling = False
        shared_edges.add(batch_edge2)
        self._remove_edges(shared_edges, node1, node2, new_node)
        return new_node
コード例 #9
0
def pairwise_reduction(net: BatchTensorNetwork, node: tensornetwork.Node,
                       edge: tensornetwork.Edge) -> tensornetwork.Node:
    """Parallel contraction of matrix chains.
  
  The operation performed by this function is described in Fig. 4 of the paper
  `TensorNetwork for Machine Learning`. It leads to a more efficient
  implementation of the MPS classifier both in terms of predictions and
  automatic gradient calculation. The idea is that the whole MPS side is saved
  in memory as one node that carries an artificial "space" edge. This function
  removes this additional index by performing the pairwise contractions as
  shown in the Figure.
  
  Args:
    net: TensorNetwork that contains the node we want to reduce.
    node: Node to reduce pairwise. The corresponding tensor should have the
      form (..., space edge, ..., a, b) and matrix multiplications will be
      performed over the last two indices using matmul.
    edge: Space edge of the node.
  
  Returns:
    node: Node after the reduction. Has the shape of given node with the `edge`
      removed.
  """
    # NOTE: This method could be included in the BatchedTensorNetwork class
    # however it seems better to be separated because (at least with the current
    # implementation) it performs a very specialized/non-general operation.
    # It also uses tf.matmul which restricts the backend, however this can be
    # easily generalized since all the backends support batched matmul.
    if not edge.is_dangling():
        raise ValueError("Cannot reduce non-dangling edge '{}'".format(edge))
    if edge.node1 is not node:
        raise ValueError("Edge '{}' does not belong to node '{}'".format(
            edge, node))

    tensor = node.tensor
    size = int(tensor.shape[edge.axis1])

    # Bring reduction edge in first position
    edge_order = list(range(len(list(tensor.shape))))
    edge_order[0] = edge.axis1
    edge_order[edge.axis1] = 0
    tensor = net.backend.transpose(tensor, edge_order)

    # Remove edge to be reduced from node
    node.edges.pop(edge.axis1)
    for e in node.edges[edge.axis1:]:
        if e.node1 is e.node2:
            raise NotImplementedError("Cannot binary reduce node "
                                      "'{}' with trace edge '{}'".format(
                                          node, e))
        if e.node1 is node:
            e.axis1 -= 1
        else:
            e.axis2 -= 1

    # Idea from this implementation is from jemisjoky/TorchMPS
    while size > 1:
        half_size = size // 2
        nice_size = 2 * half_size
        leftover = tensor[nice_size:]
        tensor = tf.matmul(tensor[0:nice_size:2], tensor[1:nice_size:2])
        tensor = net.backend.concat([tensor, leftover], axis=0)
        size = half_size + int(size % 2 == 1)

    node.tensor = tensor[0]
    return node
コード例 #10
0
def test_edge_is_being_used_false(single_node_edge):
  node = single_node_edge.node
  edge2 = Edge(name="edge", node1=node, axis1=0)
  assert not edge2.is_being_used()
コード例 #11
0
def test_edge_is_trace_true(single_node_edge):
  node = single_node_edge.node
  edge = Edge(name="edge", node1=node, axis1=1, node2=node, axis2=2)
  assert edge.is_trace()