コード例 #1
0
def draw_final_outputs_blackwhite(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    img_bw = img.mean(axis=2)
    img_bw = np.stack([img_bw] * 3, axis=2)

    if len(results) == 0:
        return img_bw

    boxes = np.asarray([r.box for r in results])

    all_masks = [r.mask for r in results]
    if all_masks[0] is not None:
        m = all_masks[0] > 0
        for m2 in all_masks[1:]:
            m = m | (m2 > 0)
        img_bw[m] = img[m]

    tags = [
        "{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score)
        for r in results
    ]
    ret = viz.draw_boxes(img_bw, boxes, tags)
    return ret
コード例 #2
0
def draw_final_outputs(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    # Display in largest to smallest order to reduce occlusion
    boxes = np.asarray([r.box for r in results])
    areas = np_area(boxes)
    sorted_inds = np.argsort(-areas)

    ret = img
    tags = []

    for result_id in sorted_inds:
        r = results[result_id]
        if r.mask is not None:
            ret = draw_mask(ret, r.mask)

    for r in results:
        tags.append("{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id],
                                       r.score))
    ret = viz.draw_boxes(ret, boxes, tags)
    return ret
コード例 #3
0
def draw_final_outputs(img, results,objectfile):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    tags = []
    for r in results:
        tags.append(
            "{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
        objectfile.write(cfg.DATA.CLASS_NAMES[r.class_id])
        objectfile.write('\t')
        objectfile.write('-1')
        objectfile.write('\t')
        objectfile.write('-1')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('{:d}'.format(int(r[0][0])))
        objectfile.write('\t')
        objectfile.write('{:d}'.format(int(r[0][1])))
        objectfile.write('\t')
        objectfile.write('{:d}'.format(int(r[0][2])))
        objectfile.write('\t')
        objectfile.write('{:d}'.format(int(r[0][3])))
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('0.0')
        objectfile.write('\t')
        objectfile.write('{:.2f}'.format(r.score))
        objectfile.write('\t')
        objectfile.write('\n')
    boxes = np.asarray([r.box for r in results])
    ret = viz.draw_boxes(img, boxes, tags)
    #ret = viz.draw_boxes(img, boxes)
    objectfile.close()

    for r in results:
        if r.mask is not None:
            ret = draw_mask(ret, r.mask)
    return ret
コード例 #4
0
ファイル: viz.py プロジェクト: eye942/FasterRCNN-Waymo
def draw_predictions(img, boxes, scores):
    """
    Args:
        boxes: kx4
        scores: kxC
    """
    if len(boxes) == 0:
        return img
    labels = scores.argmax(axis=1)
    scores = scores.max(axis=1)
    tags = ["{},{:.2f}".format(cfg.DATA.CLASS_NAMES[lb], score) for lb, score in zip(labels, scores)]
    return viz.draw_boxes(img, boxes, tags)
コード例 #5
0
ファイル: viz.py プロジェクト: quanlzheng/tensorpack
def draw_predictions(img, boxes, scores):
    """
    Args:
        boxes: kx4
        scores: kxC
    """
    if len(boxes) == 0:
        return img
    labels = scores.argmax(axis=1)
    scores = scores.max(axis=1)
    tags = ["{},{:.2f}".format(cfg.DATA.CLASS_NAMES[lb], score) for lb, score in zip(labels, scores)]
    return viz.draw_boxes(img, boxes, tags)
コード例 #6
0
def draw_predictions(img, boxes, scores):
    """
    Args:
        boxes: kx4
        scores: kxC
    """
    if len(boxes) == 0:
        return img
    labels = scores.argmax(axis=1)
    scores = scores.max(axis=1)
    tags = ["{},{:.2f}".format(COCOMeta.class_names[lb], score) for lb, score in zip(labels, scores)]
    return viz.draw_boxes(img, boxes, tags)
コード例 #7
0
    def __getitem__(self, imageid):
        filename = self.cocodb.lookup[imageid]['file_name']
        I = cv2.imread(self.prefix + '/' + filename)

        obj = self._d[imageid]

        labels = ['%d:%.2f' % (ll, ss) for ll, ss in zip(obj.label, obj.score)]
        print(obj.bbox)
        boxes = [[bb[0], bb[1], bb[0] + bb[2], bb[1] + bb[3]]
                 for bb in obj.bbox]
        I = viz.draw_boxes(I, boxes, labels)
        print('total # boxes:%d' % len(boxes))
        return I
コード例 #8
0
ファイル: viz.py プロジェクト: zhangzhili000/tensorpack
def draw_final_outputs(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    tags = []
    for label, _, score in results:
        tags.append(
            "{},{:.2f}".format(config.CLASS_NAMES[label], score))
    boxes = np.asarray([x.box for x in results])
    return viz.draw_boxes(img, boxes, tags)
コード例 #9
0
def draw_annotation(img, boxes, klass, is_crowd=None):
    labels = []
    assert len(boxes) == len(klass)
    if is_crowd is not None:
        assert len(boxes) == len(is_crowd)
        for cls, crd in zip(klass, is_crowd):
            clsname = config.CLASS_NAMES[cls]
            if crd == 1:
                clsname += ';Crowd'
            labels.append(clsname)
    else:
        for cls in klass:
            labels.append(config.CLASS_NAMES[cls])
    img = viz.draw_boxes(img, boxes, labels)
    return img
コード例 #10
0
def draw_final_outputs(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    all_boxes = []
    all_tags = []
    for class_id, boxes, scores in results:
        all_boxes.extend(boxes)
        all_tags.extend(
            ["{},{:.2f}".format(COCOMeta.class_names[class_id], sc) for sc in scores])
    all_boxes = np.asarray(all_boxes)
    if all_boxes.shape[0] == 0:
        return img
    return viz.draw_boxes(img, all_boxes, all_tags)
コード例 #11
0
ファイル: viz.py プロジェクト: ahuirecome/tensorpack
def draw_annotation(img, boxes, klass, is_crowd=None):
    labels = []
    assert len(boxes) == len(klass)
    if is_crowd is not None:
        assert len(boxes) == len(is_crowd)
        for cls, crd in zip(klass, is_crowd):
            clsname = config.CLASS_NAMES[cls]
            if crd == 1:
                clsname += ';Crowd'
            labels.append(clsname)
    else:
        for cls in klass:
            labels.append(config.CLASS_NAMES[cls])
    img = viz.draw_boxes(img, boxes, labels)
    return img
コード例 #12
0
def draw_mask(im, mask, box, label, alpha=0.5, color=None):
    """
    Overlay a mask on top of the image.
    Args:
        im: a 3-channel uint8 image in BGR
        mask: a binary 1-channel image of the same size
        color: if None, will choose automatically
    """
    if color is None:
        color = PALETTE_RGB[np.random.choice(len(PALETTE_RGB))][::-1]
    im = np.where(np.repeat((mask > 0)[:, :, None], 3, axis=2),
                  im * (1 - alpha) + color * alpha, im)
    im = im.astype('uint8')
    color_tuple = tuple([int(c) for c in color])
    im = viz.draw_boxes(im, box[np.newaxis, :], [label], color=color_tuple)
    return im
コード例 #13
0
ファイル: viz.py プロジェクト: atalwalkar/determined-1
def draw_annotation(img, boxes, klass, is_crowd=None):
    """Will not modify img"""
    labels = []
    assert len(boxes) == len(klass)
    if is_crowd is not None:
        assert len(boxes) == len(is_crowd)
        for cls, crd in zip(klass, is_crowd):
            clsname = cfg.DATA.CLASS_NAMES[cls]
            if crd == 1:
                clsname += ";Crowd"
            labels.append(clsname)
    else:
        for cls in klass:
            labels.append(cfg.DATA.CLASS_NAMES[cls])
    img = viz.draw_boxes(img, boxes, labels)
    return img
コード例 #14
0
ファイル: viz.py プロジェクト: quanlzheng/tensorpack
def draw_proposal_recall(img, proposals, proposal_scores, gt_boxes):
    """
    Draw top3 proposals for each gt.
    Args:
        proposals: NPx4
        proposal_scores: NP
        gt_boxes: NG
    """
    box_ious = np_iou(gt_boxes, proposals)    # ng x np
    box_ious_argsort = np.argsort(-box_ious, axis=1)
    good_proposals_ind = box_ious_argsort[:, :3]   # for each gt, find 3 best proposals
    good_proposals_ind = np.unique(good_proposals_ind.ravel())

    proposals = proposals[good_proposals_ind, :]
    tags = list(map(str, proposal_scores[good_proposals_ind]))
    img = viz.draw_boxes(img, proposals, tags)
    return img, good_proposals_ind
コード例 #15
0
ファイル: viz.py プロジェクト: eye942/FasterRCNN-Waymo
def draw_proposal_recall(img, proposals, proposal_scores, gt_boxes):
    """
    Draw top3 proposals for each gt.
    Args:
        proposals: NPx4
        proposal_scores: NP
        gt_boxes: NG
    """
    box_ious = np_iou(gt_boxes, proposals)    # ng x np
    box_ious_argsort = np.argsort(-box_ious, axis=1)
    good_proposals_ind = box_ious_argsort[:, :3]   # for each gt, find 3 best proposals
    good_proposals_ind = np.unique(good_proposals_ind.ravel())

    proposals = proposals[good_proposals_ind, :]
    tags = list(map(str, proposal_scores[good_proposals_ind]))
    img = viz.draw_boxes(img, proposals, tags)
    return img, good_proposals_ind
コード例 #16
0
ファイル: viz.py プロジェクト: quanlzheng/tensorpack
def draw_final_outputs(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    tags = []
    for r in results:
        tags.append(
            "{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
    boxes = np.asarray([r.box for r in results])
    ret = viz.draw_boxes(img, boxes, tags)

    for r in results:
        if r.mask is not None:
            ret = draw_mask(ret, r.mask)
    return ret
コード例 #17
0
def draw_final_outputs(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    tags = []
    for r in results:
        tags.append("{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id],
                                       r.score))
    boxes = np.asarray([r.box for r in results])
    ret = viz.draw_boxes(img, boxes)  #, tags)

    for r in results:
        if r.mask is not None:
            ret = draw_mask(ret, r.mask)
    return ret
コード例 #18
0
def draw_annotation(img, boxes, klass, polygons=None, is_crowd=None):
    """Will not modify img"""
    labels = []
    assert len(boxes) == len(klass)
    if is_crowd is not None:
        assert len(boxes) == len(is_crowd)
        for cls, crd in zip(klass, is_crowd):
            clsname = cfg.DATA.CLASS_NAMES[cls]
            if crd == 1:
                clsname += ';Crowd'
            labels.append(clsname)
    else:
        for cls in klass:
            labels.append(cfg.DATA.CLASS_NAMES[cls])
    img = viz.draw_boxes(img, boxes, labels)

    if polygons is not None:
        for p in polygons:
            mask = polygons_to_mask(p, img.shape[0], img.shape[1])
            img = draw_mask(img, mask)
    return img
コード例 #19
0
ファイル: viz.py プロジェクト: hakillha/maria03
def draw_final_outputs(img, results, tags_on=True, bb_list_input=False):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    if tags_on:
        tags = []
        for r in results:
            tags.append("{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id],
                                           r.score))
    else:
        tags = None
    if bb_list_input:
        boxes = np.asarray(results)
    else:
        boxes = np.asarray([r.box for r in results])
    ret = viz.draw_boxes(img, boxes, tags)

    return ret
コード例 #20
0
def draw_outputs(img, final_boxes, final_scores, final_labels, threshold=0.8):
    """
    Args:
        results: [DetectionResult]
    """
    results = [DetectionResult(*args) for args in
                       zip(final_boxes, final_scores, final_labels,
                           [None] * len(final_labels)) if args[1]>threshold]
    if len(results) == 0:
        return img

    tags = []
    for r in results:
        tags.append(
            "{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
    boxes = np.asarray([r.box for r in results])
    ret = viz.draw_boxes(img, boxes, tags)

    for r in results:
        if r.mask is not None:
            ret = draw_mask(ret, r.mask)
    return ret
コード例 #21
0
def draw_final_outputs(img, results, show_ids=None):
    """
    Args:
        results: [DetectionResult]
    """
    if len(results) == 0:
        return img

    if show_ids is not None:
        assert isinstance(show_ids, set)
        results = [r for r in results if r.class_id in show_ids]

    tags = []
    for r in results:
        tags.append(
            "{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
    boxes = np.asarray([r.box for r in results])
    ret = viz.draw_boxes(img, boxes, tags)

    # for r in results:
    #     if r.mask is not None:
    #         ret = draw_mask(ret, r.mask)
    return ret
コード例 #22
0
    except StopIteration:
        break
    orig_shape = batch_image.shape[:2]
    feed_dict = {image_P: batch_image}
    final_boxes_, final_labels_, final_probs_ = sess.run(
        [final_boxes, final_labels, final_probs], feed_dict)
    final_boxes_ = clip_boxes(final_boxes_, orig_shape)
    final_boxes_ = sess.run(final_boxes_)
    final_boxes_ = final_boxes_.astype('int32')

    if np.any(final_boxes_):
        tags = [
            "{},{:.2f}".format(cfg.DATA.CLASS_NAMES[lb], score)
            for lb, score in zip(final_labels_, final_probs_)
        ]
        final_viz = viz.draw_boxes(batch_image, final_boxes_, tags)
        gt_viz = draw_annotation(batch_image, batch_gt_boxes, batch_gt_labels)
        img_out = np.hstack((final_viz, gt_viz))
        imageio.imwrite(os.path.join(save_path, str(iter) + ".jpg"), img_out)

    Detection = []
    for ik in range(final_boxes_.shape[0]):
        Detection.append([
            cfg.DATA.CLASS_NAMES[final_labels_[ik]],
            float(final_probs_[ik]), final_boxes_[ik, 0], final_boxes_[ik, 1],
            final_boxes_[ik, 2] - final_boxes_[ik, 0],
            final_boxes_[ik, 3] - final_boxes_[ik, 1]
        ])
    Detection = np.array(Detection)

    #np.savetxt(os.path.join(save_folder, 'detections/',str(iter) + '.txt'), Detection, fmt='%s %1.2f %1.0f %1.0f %1.0f %1.0f')
コード例 #23
0
def visualize_dataflow2(cfg, unlabled2017_used=True, VISPATH="./", maxvis=50):
    """Visualize the dataflow with labeled and unlabled strong augmentation."""
    def prase_name(x):
        if not unlabled2017_used:
            return x + "-unlabeled"
        else:  # return coco2017 unlabeled data
            return "coco_unlabeled2017"

    def remove_no_box_data(_roidbs, filter_fn):
        num = len(_roidbs)
        _roidbs = filter_fn(_roidbs)
        logger.info(
            "Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}"
            .format(num - len(_roidbs), len(_roidbs)))
        return _roidbs

    pseudo_path = os.path.join(os.environ["PSEUDO_PATH"], "pseudo_data.npy")
    pseudo_targets = dd.io.load(pseudo_path)

    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    roidbs_u = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(prase_name(x)).training_roidbs()
            for x in cfg.DATA.TRAIN))
    roidbs = remove_no_box_data(
        roidbs, lambda x: list(
            filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0, x))
    )
    roidbs_u = remove_no_box_data(
        roidbs_u, lambda x: list(
            filter(
                lambda img: len(pseudo_targets[img["image_id"]]["boxes"]) > 0,
                x)))

    print_class_histogram(roidbs)
    print_class_histogram(roidbs_u)

    preprocess = TrainingDataPreprocessorSSlAug(
        cfg, confidence=cfg.TRAIN.CONFIDENCE, pseudo_targets=pseudo_targets)
    for jj, (rob, robu) in tqdm(enumerate(zip(roidbs, roidbs_u))):
        data = preprocess((rob, robu))
        # import pdb; pdb.set_trace()
        nn = len(pseudo_targets[robu["image_id"]]["boxes"])
        if data is None or len(data["gt_boxes_strong"]) == 0:
            print("empty annotation, {} (original {})".format(jj, nn))
            continue

        ims = viz.draw_boxes(data["image"], data["gt_boxes"],
                             [str(a) for a in data["gt_labels"]])

        ims_t = viz.draw_boxes(data["image_strong"], data["gt_boxes_strong"], [
            str(a)
            for a in data["gt_labels_strong"][:len(data["gt_boxes_strong"])]
        ])
        ims = cv2.resize(ims, (ims_t.shape[1], ims_t.shape[0]))
        vis = np.concatenate((ims, ims_t), axis=1)
        if not os.path.exists(
                os.path.dirname(
                    os.path.join(VISPATH, "result_{}.jpeg".format(jj)))):
            os.makedirs(
                os.path.dirname(
                    os.path.join(VISPATH, "result_{}.jpeg".format(jj))))
        assert cv2.imwrite(os.path.join(VISPATH, "result_{}.jpeg".format(jj)),
                           vis)

        if jj > maxvis:
            break
コード例 #24
0
        for _ in tqdm(range(len(imagelist)),'Doing Predictions:'):
            try:
                _b,_s,_l=self.session.run([self.box,self.score,self.label])
                obj = {'boxes': _b, 'labels': _l, 'scores': _s}
                ret.append(obj)
            except tf.errors.OutOfRangeError:
                break
        return ret
import tensorpack.utils.viz as viz
if __name__ == '__main__':

    with open('../../data/coco.names') as fs:
        names=fs.readlines()
    print(names[0])
    istraining=False
    model_path='/home/zxk/AI/tensorpack/FRCNN/COCO-R50C4-MaskRCNN-Standard.npz'
    service=FRCnnService(cfg,model_path)

    imagelist=['../../data/demo_data/611.jpg']
    result=service.predict_imagelist(imagelist)

    im=cv2.imread(imagelist[0])
    for r in result:
        # print(r['boxes'].shape,r['labels'].shape,r['scores'].shape)
        # print(r['scores'])

        labels=['%s:%.2f'%(names[ll-1],round(ss,2)) for ll,ss in zip(r['labels'],r['scores'])]
        print(r['labels'])
        print(labels)
        im=viz.draw_boxes(im,r['boxes'],labels)
        viz.interactive_imshow(im)
コード例 #25
0
ファイル: viz.py プロジェクト: SmartDataLab/MSNET
def draw_final_outputs(img, results):
    """
    Args:
        results: [DetectionResult]
    """
    # new_results = []
    # for r in results:
    #     if r.score <=0.49:
    #         new_results.append(r)
    # results = new_results
    if len(results) == 0:
        return img

    # Display in largest to smallest order to reduce occlusion
    boxes = np.asarray([r.box for r in results])
    areas = np_area(boxes)
    sorted_inds = np.argsort(-areas)

    ret = img
    tags = []

    new_boxes = []
    # rm_lst = class_nms(results, sorted_inds)
    rm_lst = box_class_nms(results, sorted_inds)
    print("rm_lst = ", rm_lst)

    for result_id in sorted_inds:
        if result_id in rm_lst:
            continue
        r = results[result_id]

        # print("r = ", r)
        if r.mask is not None:
            level = str(r.class_id).split(" ")[0]
            if "1" in level:
                # color = (0, 255, 0)
                # color = [0.000, 255.000, 0.000]
                color_id = 23
                # color_id = 9
            elif "2" in level:
                color_id = 22
                # color_id = 9
                # color = [0.000, 255.000, 255.000]
                # color = (0, 255, 255)
            elif "3" in level:
                color_id = 9
                # color = [0.000, 0.000, 255.000]
                # color = (0, 0, 255)
            else:
                color = [0.000, 255.000, 0.000]
                # color = (0, 255, 0)
                print("error level!")
            ret = draw_mask(ret, r.mask, color=None, color_id=color_id)

    for result_id in sorted_inds:
        if result_id in rm_lst:
            continue
        r = results[result_id]
        new_boxes.append(r.box)
        tags.append("{}, {:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id],
                                        r.score))
    # for r in results:
    #     tags.append(
    #         "{}, {:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
    ret = viz.draw_boxes(ret, new_boxes, tags)
    return ret
コード例 #26
0
ファイル: YoloNet.py プロジェクト: mckjzhangxk/deepAI
        images_and_shape=list(map(common.processImage, imagelist))
        images=np.array([im for im,_  in images_and_shape])
        orgin_shape=[s for _,s in images_and_shape]


        result=self.predict_416(images,batchSize,score_thresh,iou_thresh)
        for r,orgin in zip(result,orgin_shape):
            w,h=orgin
            if len(r['boxes'])==0 :continue
            bb=r['boxes']*np.array([w,h,w,h])/416
            bb[:, [0, 2]] = np.maximum(bb[:, [0, 2]], 0)
            bb[:, [1, 3]] = np.maximum(bb[:, [1, 3]], 0)
            bb[:, [0, 2]] = np.minimum(bb[:, [0, 2]], w)
            bb[:, [1, 3]] = np.minimum(bb[:, [1, 3]], h)
            r['boxes']=bb
        return result

import tensorpack.utils.viz as viz
if __name__ == '__main__':
    model_path='/home/zxk/AI/tensorflow-yolov3/checkpoint/yolov3.ckpt'
    service=YoLoService(model_path)
    imagelist=['/home/zxk/PycharmProjects/deepAI1/daily/8/DeepLearning/myproject/yolo3/data/demo_data/611.jpg']
    result=service.predict_imagelist(imagelist)

    # for r in result:
    #     print(r['boxes'].shape,r['labels'].shape,r['scores'].shape)
        # print(r['boxes'])
    img=cv2.imread('/home/zxk/AI/coco/val2017/000000579893.jpg')
    bbox=service.predict(img)
    img=viz.draw_boxes(img,bbox['boxes'])
    viz.interactive_imshow(img)