h_pool2_flat = tf.reshape(h_pool1, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # dropout keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # readout layer W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # loss cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(5e-3).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Get the mnist dataset (use tensorflow here) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(200): print(i) batch = mnist.train.next_batch(100) if i % 5 == 0:
train_step = tf.assign(W, W - 0.5 * W_grad) sess = tf.Session() sess.run(tf.global_variables_initializer()) # get the mnist dataset (use tensorflow here) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # train for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) t, g, ce = sess.run([train_step, W_grad, cross_entropy], feed_dict={ x: batch_xs, y_: batch_ys }) print(np.sum(g)) # eval correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ans = sess.run(accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels }) print("Accuracy: %.3f" % ans) assert ans >= 0.87
""" import your model here """ import tensorwolf as tf """ your model should support the following code """ # create model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(0.005).minimize(cross_entropy) sess = tf.Session() sess.run(tf.global_variables_initializer()) # get the mnist dataset (use tensorflow here) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # train for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # eval correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
weights = { 'h1': tf.Variable(tf.zeros([n_input, n_hidden_1])), 'h2': tf.Variable(tf.zeros([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = multilayer_perceptron(x, weights, biases) # Define loss and optimizer cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples / batch_size) # Loop over all batches