コード例 #1
0
def rgb(some_keys: Sequence[str],
        rgb_values: Sequence[str],
        tile_xyz: Tuple[int, int, int] = None,
        *,
        stretch_ranges: ListOfRanges = None,
        tile_size: Tuple[int, int] = None) -> BinaryIO:
    """Return RGB image as PNG

    Red, green, and blue channels correspond to the given values `rgb_values` of the key
    missing from `some_keys`.
    """
    import numpy as np

    # make sure all stretch ranges contain two values
    if stretch_ranges is None:
        stretch_ranges = [None, None, None]

    if len(stretch_ranges) != 3:
        raise exceptions.InvalidArgumentsError(
            'stretch_ranges argument must contain 3 values')

    stretch_ranges_ = [
        stretch_range or (None, None) for stretch_range in stretch_ranges
    ]

    if len(rgb_values) != 3:
        raise exceptions.InvalidArgumentsError(
            'rgb_values argument must contain 3 values')

    settings = get_settings()

    if tile_size is None:
        tile_size_ = settings.DEFAULT_TILE_SIZE
    else:
        tile_size_ = tile_size

    driver = get_driver(settings.DRIVER_PATH,
                        provider=settings.DRIVER_PROVIDER)

    with driver.connect():
        key_names = driver.key_names

        if len(some_keys) != len(key_names) - 1:
            raise exceptions.InvalidArgumentsError(
                'must specify all keys except last one')

        def get_band_future(band_key: str) -> Future:
            band_keys = (*some_keys, band_key)
            return xyz.get_tile_data(driver,
                                     band_keys,
                                     tile_xyz=tile_xyz,
                                     tile_size=tile_size_,
                                     asynchronous=True)

        futures = [get_band_future(key) for key in rgb_values]
        band_items = zip(rgb_values, stretch_ranges_, futures)

        out_arrays = []

        for i, (band_key, band_stretch_override,
                band_data_future) in enumerate(band_items):
            keys = (*some_keys, band_key)
            metadata = driver.get_metadata(keys)

            band_stretch_range = list(metadata['range'])
            scale_min, scale_max = band_stretch_override

            if scale_min is not None:
                band_stretch_range[0] = scale_min

            if scale_max is not None:
                band_stretch_range[1] = scale_max

            if band_stretch_range[1] < band_stretch_range[0]:
                raise exceptions.InvalidArgumentsError(
                    'Upper stretch bound must be higher than lower bound')

            band_data = band_data_future.result()
            out_arrays.append(image.to_uint8(band_data, *band_stretch_range))

    out = np.ma.stack(out_arrays, axis=-1)
    return image.array_to_png(out)
コード例 #2
0
def array_to_png(img_data: Array,
                 colormap: Union[str, Palette, None] = None) -> BinaryIO:
    """Encode an 8bit array as PNG"""
    from terracotta.cmaps import get_cmap

    transparency: Union[Tuple[int, int, int], int, bytes]

    settings = get_settings()
    compress_level = settings.PNG_COMPRESS_LEVEL

    if img_data.ndim == 3:  # encode RGB image
        if img_data.shape[-1] != 3:
            raise ValueError('3D input arrays must have three bands')

        if colormap is not None:
            raise ValueError(
                'Colormap argument cannot be given for multi-band data')

        mode = 'RGB'
        transparency = (0, 0, 0)
        palette = None

    elif img_data.ndim == 2:  # encode paletted image
        mode = 'L'

        if colormap is None:
            palette = None
            transparency = 0
        else:
            if isinstance(colormap, str):
                # get and apply colormap by name
                try:
                    cmap_vals = get_cmap(colormap)
                except ValueError as exc:
                    raise exceptions.InvalidArgumentsError(
                        f'Encountered invalid color map {colormap}') from exc
                palette = np.concatenate(
                    (np.zeros(3, dtype='uint8'), cmap_vals[:, :-1].flatten()))
                transparency_arr = np.concatenate(
                    (np.zeros(1, dtype='uint8'), cmap_vals[:, -1]))
            else:
                # explicit mapping
                if len(colormap) > 255:
                    raise exceptions.InvalidArgumentsError(
                        'Explicit color map must contain less than 256 values')

                colormap_array = np.asarray(colormap, dtype='uint8')
                if colormap_array.ndim != 2 or colormap_array.shape[1] != 4:
                    raise ValueError(
                        'Explicit color mapping must have shape (n, 4)')

                rgb, alpha = colormap_array[:, :-1], colormap_array[:, -1]
                palette = np.concatenate(
                    (np.zeros(3, dtype='uint8'), rgb.flatten(),
                     np.zeros(3 * (256 - len(colormap) - 1), dtype='uint8')))

                # PIL expects paletted transparency as raw bytes
                transparency_arr = np.concatenate(
                    (np.zeros(1, dtype='uint8'), alpha,
                     np.zeros(256 - len(colormap) - 1, dtype='uint8')))

            assert transparency_arr.shape == (256, )
            assert transparency_arr.dtype == 'uint8'
            transparency = transparency_arr.tobytes()

            assert palette.shape == (3 * 256, ), palette.shape
    else:
        raise ValueError('Input array must have 2 or 3 dimensions')

    if isinstance(img_data, np.ma.MaskedArray):
        img_data = img_data.filled(0)

    img = Image.fromarray(img_data, mode=mode)

    if palette is not None:
        img.putpalette(palette)

    sio = BytesIO()
    img.save(sio,
             'png',
             compress_level=compress_level,
             transparency=transparency)
    sio.seek(0)
    return sio
コード例 #3
0
def compute(expression: str,
            some_keys: Sequence[str],
            operand_keys: Mapping[str, str],
            stretch_range: Tuple[Number, Number],
            tile_xyz: Tuple[int, int, int] = None,
            *,
            colormap: str = None,
            tile_size: Tuple[int, int] = None) -> BinaryIO:
    """Return singleband image computed from one or more images as PNG

    Expects a Python expression that returns a NumPy array. Operands in
    the expression are replaced by the images with keys as defined by
    some_keys (all but the last key) and operand_keys (last key).

    Contrary to singleband and rgb handlers, stretch_range must be given.

    Example:

        >>> operands = {
        ...     'v1': 'B08',
        ...     'v2': 'B04'
        ... }
        >>> compute('v1 * v2', ['S2', '20171101'], operands, [0, 1000])
        <binary image containing product of bands 4 and 8>

    """
    from terracotta.expressions import evaluate_expression

    if not stretch_range[1] > stretch_range[0]:
        raise exceptions.InvalidArgumentsError(
            'Upper stretch bounds must be larger than lower bounds')

    settings = get_settings()

    if tile_size is None:
        tile_size_ = settings.DEFAULT_TILE_SIZE
    else:
        tile_size_ = tile_size

    driver = get_driver(settings.DRIVER_PATH,
                        provider=settings.DRIVER_PROVIDER)

    with driver.connect():
        key_names = driver.key_names

        if len(some_keys) != len(key_names) - 1:
            raise exceptions.InvalidArgumentsError(
                'must specify all keys except last one')

        def get_band_future(band_key: str) -> Future:
            band_keys = (*some_keys, band_key)
            return xyz.get_tile_data(driver,
                                     band_keys,
                                     tile_xyz=tile_xyz,
                                     tile_size=tile_size_,
                                     asynchronous=True)

        futures = {
            var: get_band_future(key)
            for var, key in operand_keys.items()
        }
        operand_data = {
            var: future.result()
            for var, future in futures.items()
        }

    try:
        out = evaluate_expression(expression, operand_data)
    except ValueError as exc:
        # make sure error message gets propagated
        raise exceptions.InvalidArgumentsError(
            f'error while executing expression: {exc!s}')

    out = image.to_uint8(out, *stretch_range)
    return image.array_to_png(out, colormap=colormap)