def test_xshards_symbol(self): # prepare data resource_path = os.path.join( os.path.split(__file__)[0], "../../../resources") self.ray_ctx = get_ray_ctx() train_file_path = os.path.join(resource_path, "orca/learn/train_data.json") train_data_shard = zoo.orca.data.pandas.read_json(train_file_path, self.ray_ctx, orient='records', lines=False) train_data_shard.transform_shard(prepare_data_symbol) test_file_path = os.path.join(resource_path, "orca/learn/test_data.json") test_data_shard = zoo.orca.data.pandas.read_json(test_file_path, self.ray_ctx, orient='records', lines=False) test_data_shard.transform_shard(prepare_data_symbol) config = create_trainer_config(batch_size=32, log_interval=1, seed=42) trainer = MXNetTrainer(config, train_data_shard, get_symbol_model, validation_metrics_creator=get_metrics, test_data=test_data_shard, eval_metrics_creator=get_metrics) trainer.train(nb_epoch=2)
def test_xshards_symbol(self): # prepare data resource_path = os.path.join( os.path.split(__file__)[0], "../../../resources") self.ray_ctx = get_ray_ctx() train_file_path = os.path.join(resource_path, "orca/learn/single_input_json/train") train_data_shard = zoo.orca.data.pandas.read_json(train_file_path, self.ray_ctx, orient='records', lines=False) train_data_shard.transform_shard(prepare_data_symbol) test_file_path = os.path.join(resource_path, "orca/learn/single_input_json/test") test_data_shard = zoo.orca.data.pandas.read_json(test_file_path, self.ray_ctx, orient='records', lines=False) test_data_shard.transform_shard(prepare_data_symbol) config = create_config(batch_size=32, log_interval=1, seed=42) estimator = Estimator(config, get_symbol_model, validation_metrics_creator=get_metrics, eval_metrics_creator=get_metrics, num_workers=2) estimator.fit(train_data_shard, test_data_shard, nb_epoch=2) estimator.shutdown()