コード例 #1
0
def run(args):
    global bst_saver, bst_score, bst_file, bst_ckpt
    print("{} started training, pid:{}".format(strftime("%H:%M:%S"),
                                               os.getpid()))
    tf.logging.set_verbosity(tf.logging.INFO)
    keep_prob = tf.placeholder(tf.float32, [], name="kprob")
    with tf.Session(config=tf.ConfigProto(log_device_placement=args.log_device,
                                          allow_soft_placement=True)) as sess:
        model = dncr.DNCRegressorV1(
            layer_width=LAYER_WIDTH,
            memory_size=MEMORY_SIZE,
            word_size=WORD_SIZE,
            num_writes=NUM_WRITES,
            num_reads=NUM_READS,
            keep_prob=keep_prob,
            decayed_dropout_start=DECAYED_DROPOUT_START,
            dropout_decay_steps=DROPOUT_DECAY_STEPS,
            learning_rate=LEARNING_RATE,
            decayed_lr_start=DECAYED_LR_START,
            lr_decay_steps=LR_DECAY_STEPS,
            seed=SEED)
        model_name = model.getName()
        print('{} using model: {}'.format(strftime("%H:%M:%S"), model_name))
        f = __file__
        testn = f[f.rfind('/') + 1:f.rindex('.py')]
        base_name = "{}_{}".format(testn, model_name)
        base_dir = '{}/{}'.format(LOG_DIR, base_name)
        training_dir = os.path.join(base_dir, 'training')
        checkpoint_file = os.path.join(training_dir, 'model.ckpt')
        bst_ckpt = os.path.join(base_dir, 'best', 'model.ckpt')
        bst_file_path = os.path.join(base_dir, 'best_score')
        saver = None
        summary_str = None
        d = None
        restored = False
        bno, epoch, bst_score = 0, 0, sys.maxint
        ckpt = tf.train.get_checkpoint_state(training_dir)

        if tf.gfile.Exists(bst_file_path):
            bst_file = open(bst_file_path, 'r+')
            bst_file.seek(0)
            try:
                bst_score = float(bst_file.readline().rstrip())
                print('{} previous best score: {}'.format(
                    strftime("%H:%M:%S"), bst_score))
            except Exception:
                print(
                    '{} not able to read best score. best_score file is invalid.'
                    .format(strftime("%H:%M:%S")))
            bst_file.seek(0)

        if tf.gfile.Exists(training_dir):
            print("{} training folder exists".format(strftime("%H:%M:%S")))
            if ckpt and ckpt.model_checkpoint_path:
                print("{} found model checkpoint path: {}".format(
                    strftime("%H:%M:%S"), ckpt.model_checkpoint_path))
                # Extract from checkpoint filename
                bno = int(
                    os.path.basename(ckpt.model_checkpoint_path).split('-')[1])
                print('{} resuming from last training, bno = {}'.format(
                    strftime("%H:%M:%S"), bno))
                d = getInput(bno + 1, args)
                model.setNodes(d['features'], d['labels'], d['seqlens'])
                saver = tf.train.Saver(name="reg_saver")
                saver.restore(sess, ckpt.model_checkpoint_path)
                restored = True
                rbno = sess.run(tf.train.get_global_step())
                print(
                    '{} check restored global step: {}, previous batch no: {}'.
                    format(strftime("%H:%M:%S"), rbno, bno))
                if bno != rbno:
                    print(
                        '{} bno({}) inconsistent with global step({}). reset global step with bno.'
                        .format(strftime("%H:%M:%S"), bno, rbno))
                    gstep = tf.train.get_global_step(sess.graph)
                    sess.run(tf.assign(gstep, bno))
            else:
                print(
                    "{} model checkpoint path not found, cleaning training folder"
                    .format(strftime("%H:%M:%S")))
                tf.gfile.DeleteRecursively(training_dir)

        if not restored:
            d = getInput(bno + 1, args)
            model.setNodes(d['features'], d['labels'], d['seqlens'])
            saver = tf.train.Saver(name="reg_saver")
            sess.run(tf.global_variables_initializer())
            tf.gfile.MakeDirs(training_dir)
            bst_file = open(bst_file_path, 'w+')
        bst_saver = tf.train.Saver(name="bst_saver")

        train_handle, test_handle = sess.run(
            [d['train_iter'].string_handle(), d['test_iter'].string_handle()])

        summary, train_writer, test_writer = collect_summary(
            sess, model, training_dir)
        profiler = None
        profile_path = None
        test_summary_str = None
        if args.trace:
            print("{} full trace will be collected every {} run".format(
                strftime("%H:%M:%S"), TRACE_INTERVAL))
        if args.profile:
            profiler = tf.profiler.Profiler(sess.graph)
            profile_path = os.path.join(LOG_DIR, "profile")
            tf.gfile.MakeDirs(profile_path)
        while True:
            epoch = bno // TEST_INTERVAL
            if (restored or bno % TEST_INTERVAL
                    == 0) and not (args.skip_init_test and bno == 0):
                test_summary_str, _ = validate(sess, model, summary, {
                    d['handle']: test_handle,
                    keep_prob: 1.0
                }, bno, epoch)
                restored = False
            lr, kp = None, None
            try:
                print('{} training batch {}'.format(strftime("%H:%M:%S"),
                                                    bno + 1))
                ro, rm = None, None
                if (args.trace
                        or args.profile) and bno + 1 >= 5 and bno + 1 <= 10:
                    ro = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                    rm = tf.RunMetadata()
                summary_str, kp, lr, worst = sess.run([
                    summary, model.keep_prob, model.learning_rate, model.worst,
                    model.optimize
                ], {
                    d['handle']: train_handle,
                    keep_prob: KEEP_PROB
                },
                                                      options=ro,
                                                      run_metadata=rm)[:-1]
                if profiler is not None and bno + 1 >= 5 and bno + 1 <= 10:
                    profiler.add_step(bno + 1, rm)
                    if bno + 1 == 10:
                        option_builder = tf.profiler.ProfileOptionBuilder
                        # profile timing of model operations
                        opts = (option_builder(option_builder.time_and_memory(
                        )).with_step(-1).with_file_output(
                            os.path.join(
                                profile_path,
                                "{}_ops.txt".format(base_name))).select(
                                    ['micros', 'bytes',
                                     'occurrence']).order_by('micros').build())
                        profiler.profile_operations(options=opts)
                        # profile timing by model name scope
                        opts = (option_builder(option_builder.time_and_memory(
                        )).with_step(-1).with_file_output(
                            os.path.join(
                                profile_path,
                                "{}_scope.txt".format(base_name))).select(
                                    ['micros', 'bytes',
                                     'occurrence']).order_by('micros').build())
                        profiler.profile_name_scope(options=opts)
                        # generate timeline graph
                        opts = (option_builder(option_builder.time_and_memory(
                        )).with_step(bno + 1).with_timeline_output(
                            os.path.join(
                                profile_path,
                                "{}_timeline.json".format(base_name))).build())
                        profiler.profile_graph(options=opts)
                        # Auto detect problems and generate advice.
                        # opts = (option_builder(option_builder.time_and_memory()).
                        #         with_file_output(os.path.join(profile_path, "{}_advise.txt".format(base_name))).
                        #         build())
                        # profiler.advise(options=opts)
            except tf.errors.OutOfRangeError:
                print("End of Dataset.")
                break
            bno = bno + 1
            max_diff, predict, actual = worst[0], worst[1], worst[2]
            print(
                '{} bno {} lr: {:1.6f}, kp: {:1.5f}, max_diff {:3.4f} predict {} actual {}'
                .format(strftime("%H:%M:%S"), bno, lr, kp, max_diff, predict,
                        actual))
            train_writer.add_summary(summary_str, bno)
            if rm is not None:
                train_writer.add_run_metadata(rm, "bno_{}".format(bno))
            train_writer.flush()
            if test_summary_str is not None:
                test_writer.add_summary(test_summary_str, bno)
                test_writer.flush()
            if bno == 1 or bno % SAVE_INTERVAL == 0:
                saver.save(sess,
                           checkpoint_file,
                           global_step=tf.train.get_global_step())
        # test last epoch
        test_summary_str, _ = validate(sess, model, summary, {
            d['handle']: test_handle,
            keep_prob: 1.0
        }, bno, epoch)
        train_writer.add_summary(summary_str, bno)
        test_writer.add_summary(test_summary_str, bno)
        train_writer.flush()
        test_writer.flush()
        saver.save(sess,
                   checkpoint_file,
                   global_step=tf.train.get_global_step())
        # training finished, move to 'trained' folder
        trained = os.path.join(base_dir, 'trained')
        tf.gfile.MakeDirs(trained)
        tmp_dir = os.path.join(base_dir, strftime("%Y%m%d_%H%M%S"))
        os.rename(training_dir, tmp_dir)
        shutil.move(tmp_dir, trained)
        print('{} model is saved to {}'.format(strftime("%H:%M:%S"), trained))
        bst_file.close()
コード例 #2
0
def run(args):
    global bst_saver, bst_score, bst_file, bst_ckpt
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
    keep_prob = tf.compat.v1.placeholder(tf.float32, [], name="keep_prob")
    with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(
            log_device_placement=args.log_device)) as sess:
        model = drnn.DRnnRegressorV7(
            layer_width=LAYER_WIDTH,
            dim=DIM,
            keep_prob=keep_prob,
            decayed_dropout_start=DECAYED_DROPOUT_START,
            dropout_decay_steps=DROPOUT_DECAY_STEPS,
            learning_rate=LEARNING_RATE,
            decayed_lr_start=DECAYED_LR_START,
            lr_decay_steps=LR_DECAY_STEPS,
            seed=SEED)
        model_name = model.getName()
        print('{} using model: {}'.format(strftime("%H:%M:%S"), model_name))
        f = __file__
        testn = f[f.rfind('/') + 1:f.rindex('.py')]
        base_dir = '{}/{}_{}'.format(LOG_DIR, testn, model_name)
        training_dir = os.path.join(base_dir, 'training')
        checkpoint_file = os.path.join(training_dir, 'model.ckpt')
        bst_ckpt = os.path.join(base_dir, 'best', 'model.ckpt')
        bst_file_path = os.path.join(base_dir, 'best_score')
        saver = None
        summary_str = None
        d = None
        restored = False
        bno, epoch, bst_score = 0, 0, sys.maxint
        ckpt = tf.train.get_checkpoint_state(training_dir)

        if tf.io.gfile.exists(bst_file_path):
            bst_file = open(bst_file_path, 'r+')
            bst_file.seek(0)
            try:
                bst_score = float(bst_file.readline().rstrip())
                print('{} previous best score: {}'.format(
                    strftime("%H:%M:%S"), bst_score))
            except Exception:
                print(
                    '{} not able to read best score. best_score file is invalid.'
                    .format(strftime("%H:%M:%S")))
            bst_file.seek(0)

        if tf.io.gfile.exists(training_dir):
            print("{} training folder exists".format(strftime("%H:%M:%S")))
            if ckpt and ckpt.model_checkpoint_path:
                print("{} found model checkpoint path: {}".format(
                    strftime("%H:%M:%S"), ckpt.model_checkpoint_path))
                # Extract from checkpoint filename
                bno = int(
                    os.path.basename(ckpt.model_checkpoint_path).split('-')[1])
                print('{} resuming from last training, bno = {}'.format(
                    strftime("%H:%M:%S"), bno))
                d = getInput(bno + 1, args)
                model.setNodes(d['features'], d['labels'], d['seqlens'])
                saver = tf.compat.v1.train.Saver(name="reg_saver")
                saver.restore(sess, ckpt.model_checkpoint_path)
                restored = True
                rbno = sess.run(tf.compat.v1.train.get_global_step())
                print(
                    '{} check restored global step: {}, previous batch no: {}'.
                    format(strftime("%H:%M:%S"), rbno, bno))
                if bno != rbno:
                    print(
                        '{} bno({}) inconsistent with global step({}). reset global step with bno.'
                        .format(strftime("%H:%M:%S"), bno, rbno))
                    gstep = tf.compat.v1.train.get_global_step(sess.graph)
                    sess.run(tf.compat.v1.assign(gstep, bno))
            else:
                print(
                    "{} model checkpoint path not found, cleaning training folder"
                    .format(strftime("%H:%M:%S")))
                tf.io.gfile.rmtree(training_dir)

        if not restored:
            d = getInput(bno + 1, args)
            model.setNodes(d['features'], d['labels'], d['seqlens'])
            saver = tf.compat.v1.train.Saver(name="reg_saver")
            sess.run(tf.compat.v1.global_variables_initializer())
            tf.io.gfile.makedirs(training_dir)
            bst_file = open(bst_file_path, 'w+')
        bst_saver = tf.compat.v1.train.Saver(name="bst_saver")

        train_handle, test_handle = sess.run(
            [d['train_iter'].string_handle(), d['test_iter'].string_handle()])

        summary, train_writer, test_writer = collect_summary(
            sess, model, training_dir)
        test_summary_str = None
        while True:
            # bno = epoch*TEST_INTERVAL
            epoch = bno // TEST_INTERVAL
            if restored or bno % TEST_INTERVAL == 0:
                test_summary_str, _ = validate(sess, model, summary, {
                    d['handle']: test_handle,
                    keep_prob: 1.0
                }, bno, epoch)
                restored = False
            lr, kp = None, None
            try:
                print('{} training batch {}'.format(strftime("%H:%M:%S"),
                                                    bno + 1))
                summary_str, kp, lr, worst = sess.run([
                    summary, model.keep_prob, model.learning_rate, model.worst,
                    model.optimize
                ], {
                    d['handle']: train_handle,
                    keep_prob: KEEP_PROB
                })[:-1]
            except tf.errors.OutOfRangeError:
                print("End of Dataset.")
                break
            bno = bno + 1
            max_diff, predict, actual = worst[0], worst[1], worst[2]
            print(
                '{} bno {} lr: {:1.6f}, kp: {:1.5f}, max_diff {:3.4f} predict {} actual {}'
                .format(strftime("%H:%M:%S"), bno, lr, kp, max_diff, predict,
                        actual))
            train_writer.add_summary(summary_str, bno)
            test_writer.add_summary(test_summary_str, bno)
            train_writer.flush()
            test_writer.flush()
            if bno == 1 or bno % SAVE_INTERVAL == 0:
                saver.save(sess,
                           checkpoint_file,
                           global_step=tf.compat.v1.train.get_global_step())
        # test last epoch
        test_summary_str, _ = validate(sess, model, summary, {
            d['handle']: test_handle,
            keep_prob: 1.0
        }, bno, epoch)
        train_writer.add_summary(summary_str, bno)
        test_writer.add_summary(test_summary_str, bno)
        train_writer.flush()
        test_writer.flush()
        saver.save(sess,
                   checkpoint_file,
                   global_step=tf.compat.v1.train.get_global_step())
        # training finished, move to 'trained' folder
        trained = os.path.join(base_dir, 'trained')
        tf.io.gfile.makedirs(trained)
        tmp_dir = os.path.join(base_dir, strftime("%Y%m%d_%H%M%S"))
        os.rename(training_dir, tmp_dir)
        shutil.move(tmp_dir, trained)
        print('{} model is saved to {}'.format(strftime("%H:%M:%S"), trained))
        bst_file.close()