def example_lines(): """Plot for example_lines, illustrating entire forward process both with and without hanning filter.""" im = TestImage(shift=True, nx=1000, ny=1000) im.addLines(width=10, spacing=75, value=5, angle=45) im.zeroPad() im.calcAll() im.plotMore() pylab.savefig('example_lines_a.%s' %(figformat), format='%s' %(figformat)) pylab.close() im = TestImage(shift=True, nx=1000, ny=1000) im.addLines(width=10, spacing=75, value=5, angle=45) im.hanningFilter() im.zeroPad() im.calcAll() im.plotMore() pylab.savefig('example_lines_b.%s' %(figformat), format='%s' %(figformat)) pylab.close() return
# Walk through constructing & inverting the Image/FFT/PSD/ACovF & 1d PSD/1d ACovF. # Comment and uncomment lines to do different things (this is really just a sort of convenient working script). import numpy import pylab from testImage import TestImage # from pImage import PImage # if you don't need to do any plotting from pImagePlots import PImagePlots # if you do need to use the plotting functions for PImage # Use TestImage to set up the image im = TestImage(shift=True, nx=750, ny=750) im.addLines(spacing=50, width=10, value=10, angle=0) #im.addGaussian(xwidth=30, ywidth=30) #im.addSin(scale=100) #im.addCircle(radius=20) #im.addEllipseRandom(nEllipse=100, value=5) im.addNoise(sigma=1.) #im.hanningFilter() #im.zeroPad() # Calculate FFT/PSD2d/ACovF/PSD1d in one go (can do these separately too). # Use automatic binsize or user-defined binsize. im.calcAll(min_dr=1.0, min_npix=2) im.plotMore() #im.showImage() #im.showAcovf2d(log=True, imag=False) #im.showPsd1d() #im.showAcovf1d() #im.showSf()
def inversion(): """Generate some example images & invert them to reconstruct the original image.""" im = TestImage(shift=True, nx=1000, ny=1000) #im.addEllipseGrid(gridX=200, gridY=100, semiX=50, semiY=25, value=1) im.addLines(width=20, spacing=200, value=1, angle=45) im.addSin(scale=300) im.hanningFilter() im.zeroPad() #cmap = pylab.cm.gray_r cmap = None clims = im.showImage(cmap=cmap) pylab.savefig('invert_image.%s' %(figformat), format='%s' %(figformat)) im.calcAll(min_npix=1, min_dr=1) # Invert from ACovF and show perfect reconstruction. im.invertAcovf2d() im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf2d_good.%s' %(figformat), format='%s' %(figformat)) # Invert from ACovF 2d without phases im.invertAcovf2d(usePhasespec=False, seed=42) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf2d_nophases.%s' %(figformat), format='%s' %(figformat)) # Invert from ACovF 1d with phases im.invertAcovf1d(phasespec=im.phasespec) im.invertAcovf2d(useI=True) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf1d_phases.%s' %(figformat), format='%s' %(figformat)) # Invert from ACovF 1d without phases im.invertAcovf1d(seed=42) im.invertAcovf2d(useI=True) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf1d_nophases.%s' %(figformat), format='%s' %(figformat)) # Recalculate 1-d PSD and ACovF from this last reconstructed image (ACovF1d no phases) im2 = PImagePlots() im2.setImage(im.imageI) im2.calcAll(min_npix=1, min_dr=1) legendlabels=['Reconstructed', 'Original'] im2.showPsd1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_ACovF_Psd1d.%s' %(figformat), format='%s' %(figformat)) im2.showAcovf1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_ACovF_Acovf1d.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD and show perfect reconstruction. im.invertPsd2d() im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd2d_good.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD 2d without phases im.invertPsd2d(usePhasespec=False, seed=42) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd2d_nophases.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD 1d with phases im.invertPsd1d(phasespec=im.phasespec) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd1d_phases.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD 1d without phases im.invertPsd1d(seed=42) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd1d_nophases.%s' %(figformat), format='%s' %(figformat)) # Recalculate 1-d PSD and ACovF from this last reconstructed image (PSD1d no phases) im2 = PImagePlots() im2.setImage(im.imageI) im2.calcAll(min_npix=1, min_dr=1) im2.showPsd1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_PSD_Psd1d.%s' %(figformat), format='%s' %(figformat)) im2.showAcovf1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_PSD_Acovf1d.%s' %(figformat), format='%s' %(figformat)) pylab.close() return
import pylab from testImage import TestImage # Plain image, with noise im = TestImage() im.addLines(width=10, spacing=50, value=5) #im.addNoise() im.hanningFilter() im.zeroPad() im.calcAll() #im.plotAll(title='Gaussian Noise') im.plotMore(title='Gaussian Noise') pylab.show() exit() # Gaussian image im = TestImage() im.addGaussian(xwidth=20, ywidth=20) im.hanningFilter() im.zeroPad() im.calcAll() im.plotAll(title='Gaussian') # Sin, s=100 im = TestImage() im.addSin(scale=100) im.hanningFilter() im.zeroPad() im.calcAll() im.plotAll(title='Sin, scale=100')