def test_sketch_search_policy_basic(): # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={'seed': 944563397, 'search_policy': 'sketch'}) t.start() t.join()
def test_sketch_search_policy_xgbmodel(): # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={'seed': 944563397, 'search_policy': 'sketch', 'cost_model': auto_scheduler.XGBModel()}) t.start() t.join()
def test_sketch_search_policy_cuda_rpc_runner(): measure_ctx = auto_scheduler.LocalRPCMeasureContext() # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={'seed': 944563397, 'search_policy': 'sketch', 'target': 'cuda', 'runner': measure_ctx.runner}) t.start() t.join()
def test_sketch_search_policy_cuda_xgbmodel_rpc_runner(): if not tvm.runtime.enabled("cuda"): return measure_ctx = auto_scheduler.LocalRPCMeasureContext() # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={'seed': 944563397, 'search_policy': 'sketch', 'target': 'cuda', 'runner': measure_ctx.runner, 'cost_model': auto_scheduler.XGBModel()}) t.start() t.join()
def test_sketch_search_policy_cuda_rpc_runner(): measure_ctx = auto_scheduler.LocalRPCMeasureContext() # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread( target=search_common, kwargs={ "target": "cuda", "runner": measure_ctx.runner, }, ) t.start() t.join()
def test_sketch_search_policy_cuda_xgbmodel_rpc_runner(): if not tvm.runtime.enabled("cuda"): return measure_ctx = auto_scheduler.LocalRPCMeasureContext() # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread( target=search_common, kwargs={ "seed": 944563397, "search_policy": "sketch", "target": "cuda", "runner": measure_ctx.runner, "cost_model": auto_scheduler.XGBModel(), }, ) t.start() t.join()
def test_workload_registry_search_basic(): # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={"seed": 944563397}) t.start() t.join() t = PropagatingThread(target=search_common, kwargs={ "seed": 944563397, "workload": "matmul_auto_scheduler_test" }) t.start() t.join() t = PropagatingThread( target=search_common, kwargs={ "seed": 944563397, "workload": "matmul_auto_scheduler_test_rename_1" }, ) t.start() t.join()
def test_workload_registry_search_basic(): # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={ "search_policy": "empty", "num_measure_trials": 2 }) t.start() t.join() t = PropagatingThread( target=search_common, kwargs={ "workload": "matmul_auto_scheduler_test", "num_measure_trials": 2, "search_policy": "empty", }, ) t.start() t.join() t = PropagatingThread( target=search_common, kwargs={ "workload": "matmul_auto_scheduler_test_rename_1", "num_measure_trials": 2, "search_policy": "empty", }, ) t.start() t.join()
def test_workload_registry_search_basic(): if not tvm.runtime.enabled("llvm"): return # wrap the search in a new thread to avoid the conflict # between python's multiprocessing and tvm's thread pool t = PropagatingThread(target=search_common, kwargs={'seed': 944563397}) t.start() t.join() t = PropagatingThread(target=search_common, kwargs={ 'seed': 944563397, 'workload': "matmul_auto_scheduler_test" }) t.start() t.join() t = PropagatingThread(target=search_common, kwargs={ 'seed': 944563397, 'workload': "matmul_auto_scheduler_test_rename_1" }) t.start() t.join()