def get_results(series, gesture_id): # todo setup a config for current_end ( from the trained model) current_end = 0 window_len = CONFIG.get_size_dim(gesture_id) window = np.full((1, window_len), np.nan) results = list() while current_end <= len(series) - 1: window, current_end, current_start = Launcher.update_window( series, window, current_end) results.append(window) return results
def detect(array, gesture_id): peaks = list() count = 0 start = 0 for i, v in enumerate(array): if v < CONFIG.get_threshold(gesture_id): print("peak found") start = start + count count += 1 if count == CONFIG.get_size_dim(gesture_id) - 1: peaks.append(Gesture(start, count, array[start:count])) count = 0 start = 0 return peaks
def detect_old(array, gesture_id): starting_point = CONFIG.get_size_dim(gesture_id) - 1 for i, v in enumerate(array[starting_point:]): if all(j < CONFIG.get_threshold(gesture_id) for j in v): print("i maybe found a gesture from index " + i.__str__() + "to index " + (i + 150).__str__())