コード例 #1
0
 def test_train_ovr(self):
     for k in range(2, 6):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(50, k)
             w, b = pvml.one_vs_rest_svm_train(X, Y, 0, lr=1e-1, steps=1000)
             Yhat = pvml.one_vs_rest_svm_inference(X, w, b)[0]
             self.assertListEqual(Y.tolist(), Yhat.tolist())
コード例 #2
0
ファイル: test_knn.py プロジェクト: claudio-unipv/pvml
 def test_knn_auto_k(self):
     for k in range(1, 5):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(24, k)
             k, _ = pvml.knn_select_k(X, Y, maxk=7)
             self.assertGreater(k, 0)
             self.assertLess(k, 8)
コード例 #3
0
ファイル: test_cnn.py プロジェクト: claudio-unipv/pvml
 def test_batch(self):
     X, Y = test_data.separable_circle_data_set(10, 2)
     net = pvml.CNN([X.shape[1], 2, 2], [1, 1])
     X = X.reshape(X.shape[0], 1, 1, X.shape[1])
     net.train(X, Y, lr=1e-1, steps=1000, batch=10)
     Yhat, P = net.inference(X)
     self.assertListEqual(Y.tolist(), Yhat.tolist())
コード例 #4
0
 def test_heteroscedastic_gda(self):
     for k in range(1, 5):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(48, k)
             means, icovs, priors = pvml.hgda_train(X, Y)
             Yhat, scores = pvml.hgda_inference(X, means, icovs, priors)
             self.assertListEqual(Y.tolist(), Yhat.tolist())
             self.assertListEqual(priors.tolist(), [1.0 / k] * k)
コード例 #5
0
 def test_train1(self):
     for k in range(1, 6):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(50, k)
             w, b = pvml.multinomial_logreg_train(X, Y, 0, lr=1e-1, steps=1000)
             P = pvml.multinomial_logreg_inference(X, w, b)
             Yhat = P.argmax(1)
             self.assertListEqual(Y.tolist(), Yhat.tolist())
コード例 #6
0
ファイル: test_classtree.py プロジェクト: claudio-unipv/pvml
 def test_train_no_pruning(self):
     tree = pvml.ClassificationTree()
     div = ["gini", "entropy", "error"]
     for k in range(1, 6):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(50, k)
             tree.train(X, Y, diversity=div[k % 3], pruning_cv=0)
             Yhat = tree.inference(X)[0]
             self.assertListEqual(Y.tolist(), Yhat.tolist())
コード例 #7
0
 def test_train_ovo(self):
     for k in range(2, 6):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(50, k)
             a, b = pvml.one_vs_one_ksvm_train(X,
                                               Y,
                                               "rbf",
                                               0.1,
                                               0,
                                               lr=1e-1,
                                               steps=1000)
             Yhat = pvml.one_vs_one_ksvm_inference(X, X, a, b, "rbf",
                                                   0.1)[0]
             self.assertListEqual(Y.tolist(), Yhat.tolist())
コード例 #8
0
 def test_train1(self):
     X, Y = test_data.separable_circle_data_set(50, 2)
     w, b = pvml.svm_train(X, Y, 0, lr=1e-1, steps=1000)
     Yhat, P = pvml.svm_inference(X, w, b)
     self.assertListEqual(Y.tolist(), Yhat.tolist())
     self.assertListEqual(Yhat.tolist(), (P > 0).tolist())
コード例 #9
0
ファイル: test_knn.py プロジェクト: claudio-unipv/pvml
 def test_knn_5(self):
     for k in range(1, 5):
         with self.subTest(k):
             X, Y = test_data.separable_circle_data_set(48, k)
             Yhat, P = pvml.knn_inference(X, X, Y, k=5)
             self.assertListEqual(Y.tolist(), Yhat.tolist())
コード例 #10
0
ファイル: test_ksvm.py プロジェクト: claudio-unipv/pvml
 def test_train1(self):
     X, Y = test_data.separable_circle_data_set(50, 2)
     alpha, b = pvml.ksvm_train(X, Y, "rbf", 0.1, 0, lr=1e-1, steps=1000)
     Yhat, P = pvml.ksvm_inference(X, X, alpha, b, "rbf", 0.1)
     self.assertListEqual(Y.tolist(), Yhat.tolist())
     self.assertListEqual(Yhat.tolist(), (P > 0).tolist())
コード例 #11
0
 def test_train1(self):
     X, Y = test_data.separable_circle_data_set(50, 2)
     w, b = pvml.perceptron_train(X, Y)
     Yhat, Z = pvml.perceptron_inference(X, w, b)
     self.assertListEqual(Y.tolist(), Yhat.tolist())