コード例 #1
0
ファイル: p2p_fingerprint.py プロジェクト: thothd/unit-e
    def build_chain(self, nblocks, prev_hash, prev_height, prev_median_time, unspent_outputs, snapshot_meta):
        blocks = []
        for i in range(nblocks):
            coinbase = sign_coinbase(self.nodes[0], create_coinbase(prev_height + 1, unspent_outputs[i], snapshot_meta.hash))
            block_time = prev_median_time + 1
            block = create_block(int(prev_hash, 16), coinbase, block_time)
            block.solve()
            blocks.append(block)
            prev_hash = block.hash

            snapshot_meta = update_snapshot_with_tx(self.nodes[0], snapshot_meta, prev_height + 1, coinbase)
            prev_height += 1
            prev_median_time = block_time
        return blocks
コード例 #2
0
    def create_test_block(self, coin, txs, version=536870912):
        coinbase = sign_coinbase(
            self.nodes[0],
            create_coinbase(self.tipheight + 1, coin,
                            self.tip_snapshot_meta.hash))
        block = create_block(self.tip, coinbase, self.last_block_time + 600)
        block.nVersion = version
        block.vtx.extend(txs)
        block.ensure_ltor()
        block.compute_merkle_trees()
        block.solve()

        self.tip_snapshot_meta = update_snapshot_with_tx(
            self.nodes[0], self.tip_snapshot_meta, self.tipheight + 1,
            coinbase)
        return block
コード例 #3
0
    def generate_blocks(self, coins, number, version, test_blocks=[]):
        for i in range(number):
            coin = coins.pop()
            coinbase = sign_coinbase(
                self.nodes[0],
                create_coinbase(self.height, coin, self.snapshot_meta.hash))
            block = create_block(self.tip, coinbase, self.last_block_time + 1)
            block.nVersion = version
            block.solve()
            test_blocks.append([block, True])
            self.last_block_time += 1

            self.snapshot_meta = update_snapshot_with_tx(
                self.nodes[0], self.snapshot_meta, self.height, coinbase)
            self.tip = block.sha256
            self.height += 1
        return test_blocks
コード例 #4
0
    def test_sequence_lock_unconfirmed_inputs(self):
        # Store height so we can easily reset the chain at the end of the test
        cur_height = self.nodes[0].getblockcount()

        # Create a mempool tx.
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Anyone-can-spend mempool tx.
        # Sequence lock of 0 should pass.
        tx2 = CTransaction()
        tx2.nVersion = 2
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [
            CTxOut(int(tx1.vout[0].nValue - self.relayfee * UNIT),
                   CScript([b'a']))
        ]
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(tx2_raw)

        # Create a spend of the 0th output of orig_tx with a sequence lock
        # of 1, and test what happens when submitting.
        # orig_tx.vout[0] must be an anyone-can-spend output
        def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
            sequence_value = 1
            if not use_height_lock:
                sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG

            tx = CTransaction()
            tx.nVersion = 2
            tx.vin = [
                CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)
            ]
            tx.vout = [
                CTxOut(int(orig_tx.vout[0].nValue - relayfee * UNIT),
                       CScript([b'a' * 35]))
            ]
            tx.rehash()

            if (orig_tx.hash in node.getrawmempool()):
                # sendrawtransaction should fail if the tx is in the mempool
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR,
                                        node.sendrawtransaction, ToHex(tx))
            else:
                # sendrawtransaction should succeed if the tx is not in the mempool
                node.sendrawtransaction(ToHex(tx))

            return tx

        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=True)
        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=False)

        # Now mine some blocks, but make sure tx2 doesn't get mined.
        # Use prioritisetransaction to lower the effective feerate to 0
        self.nodes[0].prioritisetransaction(txid=tx2.hash,
                                            fee_delta=int(-self.relayfee *
                                                          UNIT))
        cur_time = int(time.time())
        for i in range(10):
            self.nodes[0].setmocktime(cur_time + 600)
            self.nodes[0].generate(1)
            cur_time += 600

        assert tx2.hash in self.nodes[0].getrawmempool()
        tip_snapshot_meta = get_tip_snapshot_meta(self.nodes[0])

        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=True)
        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=False)

        # Mine tx2, and then try again
        self.nodes[0].prioritisetransaction(txid=tx2.hash,
                                            fee_delta=int(self.relayfee *
                                                          UNIT))

        # Advance the time on the node so that we can test timelocks
        self.nodes[0].setmocktime(cur_time + 600)
        self.nodes[0].generate(1)
        assert tx2.hash not in self.nodes[0].getrawmempool()

        # Now that tx2 is not in the mempool, a sequence locked spend should
        # succeed
        tx3 = test_nonzero_locks(tx2,
                                 self.nodes[0],
                                 self.relayfee,
                                 use_height_lock=False)
        assert tx3.hash in self.nodes[0].getrawmempool()

        self.nodes[0].generate(1)
        assert tx3.hash not in self.nodes[0].getrawmempool()

        # One more test, this time using height locks
        tx4 = test_nonzero_locks(tx3,
                                 self.nodes[0],
                                 self.relayfee,
                                 use_height_lock=True)
        assert tx4.hash in self.nodes[0].getrawmempool()

        # Now try combining confirmed and unconfirmed inputs
        tx5 = test_nonzero_locks(tx4,
                                 self.nodes[0],
                                 self.relayfee,
                                 use_height_lock=True)
        assert tx5.hash not in self.nodes[0].getrawmempool()

        utxos = self.nodes[0].listunspent()
        tx5.vin.append(
            CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]),
                  nSequence=1))
        tx5.vout[0].nValue += int(utxos[0]["amount"] * UNIT)
        raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"]

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR,
                                self.nodes[0].sendrawtransaction, raw_tx5)

        # Test mempool-BIP68 consistency after reorg
        #
        # State of the transactions in the last blocks:
        # ... -> [ tx2 ] ->  [ tx3 ]
        #         tip-1        tip
        # And currently tx4 is in the mempool.
        #
        # If we invalidate the tip, tx3 should get added to the mempool, causing
        # tx4 to be removed (fails sequence-lock).
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        assert tx4.hash not in self.nodes[0].getrawmempool()
        assert tx3.hash in self.nodes[0].getrawmempool()

        # Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
        # diagram above).
        # This would cause tx2 to be added back to the mempool, which in turn causes
        # tx3 to be removed.
        tip = int(
            self.nodes[0].getblockhash(self.nodes[0].getblockcount() - 1), 16)
        height = self.nodes[0].getblockcount()
        # Let's get the available stake that is not already used
        # We must exclude tx2 outputs from the list since any stake referred to them will fail
        # In order to do that, we limit outputs with the number of minimum confirmations (minconf = 2)
        avail_stake = [
            x for x in self.nodes[0].listunspent(2) if x['txid'] != tx1.hash
        ]
        for i in range(2):
            stake = avail_stake.pop()
            coinbase = sign_coinbase(
                self.nodes[0],
                create_coinbase(height, stake, tip_snapshot_meta.hash))
            block = create_block(tip, coinbase, cur_time)
            block.nVersion = 3
            block.solve()
            tip = block.sha256

            tip_snapshot_meta = update_snapshot_with_tx(
                self.nodes[0], tip_snapshot_meta, height, coinbase)

            height += 1
            self.nodes[0].p2p.send_and_ping(msg_block(block))
            cur_time += 1

        # sync as the reorg is happening
        self.nodes[0].p2p.sync_with_ping()
        mempool = self.nodes[0].getrawmempool()
        assert tx3.hash not in mempool
        assert tx2.hash in mempool

        # Reset the chain and get rid of the mocktimed-blocks
        self.nodes[0].setmocktime(0)
        self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height +
                                                                 1))
        self.nodes[0].generate(10)
コード例 #5
0
    def test_nonnull_locators(self, test_node, inv_node):
        tip = int(self.nodes[0].getbestblockhash(), 16)

        # PART 1
        # 1. Mine a block; expect inv announcements each time
        self.log.info(
            "Part 1: headers don't start before sendheaders message...")
        for i in range(4):
            self.log.debug("Part 1.{}: starting...".format(i))
            old_tip = tip
            tip = self.mine_blocks(1)
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_inv_announcement(inv=[tip])
            # Try a few different responses; none should affect next announcement
            if i == 0:
                # first request the block
                test_node.send_get_data([tip])
                test_node.wait_for_block(tip)
            elif i == 1:
                # next try requesting header and block
                test_node.send_get_headers(locator=[old_tip], hashstop=tip)
                test_node.send_get_data([tip])
                test_node.wait_for_block(tip)
                test_node.clear_block_announcements(
                )  # since we requested headers...
            elif i == 2:
                # this time announce own block via headers
                inv_node.clear_block_announcements()
                height = self.nodes[0].getblockcount()
                last_time = self.nodes[0].getblock(
                    self.nodes[0].getbestblockhash())['time']
                block_time = last_time + 1
                snapshot_hash = get_tip_snapshot_meta(self.nodes[0]).hash
                new_block = create_block(
                    tip, self.create_coinbase(height + 1, snapshot_hash),
                    block_time)
                new_block.solve()
                test_node.send_header_for_blocks([new_block])
                test_node.wait_for_getdata([new_block.sha256])
                test_node.send_message(msg_block(new_block))
                test_node.sync_with_ping()  # make sure this block is processed
                wait_until(lambda: inv_node.block_announced,
                           timeout=60,
                           lock=mininode_lock)
                inv_node.clear_block_announcements()
                test_node.clear_block_announcements()

        self.log.info("Part 1: success!")
        self.log.info(
            "Part 2: announce blocks with headers after sendheaders message..."
        )
        # PART 2
        # 2. Send a sendheaders message and test that headers announcements
        # commence and keep working.
        test_node.send_message(msg_sendheaders())
        prev_tip = int(self.nodes[0].getbestblockhash(), 16)
        test_node.send_get_headers(locator=[prev_tip], hashstop=0)
        test_node.sync_with_ping()

        # Now that we've synced headers, headers announcements should work
        tip = self.mine_blocks(1)
        inv_node.check_last_inv_announcement(inv=[tip])
        test_node.check_last_headers_announcement(headers=[tip])

        height = self.nodes[0].getblockcount() + 1
        block_time += 10  # Advance far enough ahead
        snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
        for i in range(10):
            self.log.debug("Part 2.{}: starting...".format(i))
            # Mine i blocks, and alternate announcing either via
            # inv (of tip) or via headers. After each, new blocks
            # mined by the node should successfully be announced
            # with block header, even though the blocks are never requested
            for j in range(2):
                self.log.debug("Part 2.{}.{}: starting...".format(i, j))
                blocks = []

                coins = get_unspent_coins(self.nodes[0], i + 1)

                for b in range(i + 1):
                    coinbase = self.create_coinbase(height, snapshot_meta.hash,
                                                    coins[b])
                    blocks.append(create_block(tip, coinbase, block_time))
                    blocks[-1].solve()
                    tip = blocks[-1].sha256

                    snapshot_meta = update_snapshot_with_tx(
                        self.nodes[0], snapshot_meta, height, coinbase)

                    block_time += 1
                    height += 1

                if j == 0:
                    # Announce via inv
                    test_node.send_block_inv(tip)
                    test_node.wait_for_getheaders()
                    # Should have received a getheaders now
                    test_node.send_header_for_blocks(blocks)
                    # Test that duplicate inv's won't result in duplicate
                    # getdata requests, or duplicate headers announcements
                    [inv_node.send_block_inv(x.sha256) for x in blocks]
                    test_node.wait_for_getdata([x.sha256 for x in blocks])
                    inv_node.sync_with_ping()
                else:
                    # Announce via headers
                    test_node.send_header_for_blocks(blocks)
                    test_node.wait_for_getdata([x.sha256 for x in blocks])
                    # Test that duplicate headers won't result in duplicate
                    # getdata requests (the check is further down)
                    inv_node.send_header_for_blocks(blocks)
                    inv_node.sync_with_ping()
                [test_node.send_message(msg_block(x)) for x in blocks]
                test_node.sync_with_ping()
                inv_node.sync_with_ping()
                # This block should not be announced to the inv node (since it also
                # broadcast it)
                assert "inv" not in inv_node.last_message
                assert "headers" not in inv_node.last_message
                tip = self.mine_blocks(1)
                snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
                inv_node.check_last_inv_announcement(inv=[tip])
                test_node.check_last_headers_announcement(headers=[tip])
                height += 1
                block_time += 1

        self.log.info("Part 2: success!")

        self.log.info(
            "Part 3: headers announcements can stop after large reorg, and resume after headers/inv from peer..."
        )

        # PART 3.  Headers announcements can stop after large reorg, and resume after
        # getheaders or inv from peer.
        for j in range(2):
            self.log.debug("Part 3.{}: starting...".format(j))
            # First try mining a reorg that can propagate with header announcement
            new_block_hashes = self.mine_reorg(length=7)
            tip = new_block_hashes[-1]
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_headers_announcement(headers=new_block_hashes)

            block_time += 8

            # Mine a too-large reorg, which should be announced with a single inv
            new_block_hashes = self.mine_reorg(length=8)
            tip = new_block_hashes[-1]
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_inv_announcement(inv=[tip])

            block_time += 9

            fork_point = self.nodes[0].getblock(
                "%02x" % new_block_hashes[0])["previousblockhash"]
            fork_point = int(fork_point, 16)

            # Use getblocks/getdata
            test_node.send_getblocks(locator=[fork_point])
            test_node.check_last_inv_announcement(inv=new_block_hashes)
            test_node.send_get_data(new_block_hashes)
            test_node.wait_for_block(new_block_hashes[-1])

            for i in range(3):
                self.log.debug("Part 3.{}.{}: starting...".format(j, i))

                # Mine another block, still should get only an inv
                tip = self.mine_blocks(1)
                inv_node.check_last_inv_announcement(inv=[tip])
                test_node.check_last_inv_announcement(inv=[tip])
                if i == 0:
                    # Just get the data -- shouldn't cause headers announcements to resume
                    test_node.send_get_data([tip])
                    test_node.wait_for_block(tip)
                elif i == 1:
                    # Send a getheaders message that shouldn't trigger headers announcements
                    # to resume (best header sent will be too old)
                    test_node.send_get_headers(locator=[fork_point],
                                               hashstop=new_block_hashes[1])
                    test_node.send_get_data([tip])
                    test_node.wait_for_block(tip)
                elif i == 2:
                    # This time, try sending either a getheaders to trigger resumption
                    # of headers announcements, or mine a new block and inv it, also
                    # triggering resumption of headers announcements.
                    test_node.send_get_data([tip])
                    test_node.wait_for_block(tip)
                    if j == 0:
                        test_node.send_get_headers(locator=[tip], hashstop=0)
                        test_node.sync_with_ping()
                    else:
                        test_node.send_block_inv(tip)
                        test_node.sync_with_ping()
            # New blocks should now be announced with header
            tip = self.mine_blocks(1)
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_headers_announcement(headers=[tip])

        self.log.info("Part 3: success!")

        self.log.info("Part 4: Testing direct fetch behavior...")
        tip = self.mine_blocks(1)
        height = self.nodes[0].getblockcount() + 1
        last_time = self.nodes[0].getblock(
            self.nodes[0].getbestblockhash())['time']
        block_time = last_time + 1

        # Create 2 blocks.  Send the blocks, then send the headers.
        blocks = []
        snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
        coins = get_unspent_coins(self.nodes[0], 2)
        for b in range(2):
            coinbase = self.create_coinbase(height, snapshot_meta.hash,
                                            coins[b])
            blocks.append(create_block(tip, coinbase, block_time))
            blocks[-1].solve()
            tip = blocks[-1].sha256
            snapshot_meta = update_snapshot_with_tx(self.nodes[0],
                                                    snapshot_meta, height,
                                                    coinbase)
            block_time += 1
            height += 1
            inv_node.send_message(msg_block(blocks[-1]))

        inv_node.sync_with_ping()  # Make sure blocks are processed
        test_node.last_message.pop("getdata", None)
        test_node.send_header_for_blocks(blocks)
        test_node.sync_with_ping()
        # should not have received any getdata messages
        with mininode_lock:
            assert "getdata" not in test_node.last_message

        # This time, direct fetch should work
        blocks = []
        snapshots = [get_tip_snapshot_meta(self.nodes[0])]
        coins = get_unspent_coins(self.nodes[0], 3)
        for b in range(3):
            coinbase = self.create_coinbase(height, snapshots[-1].hash,
                                            coins[b])
            blocks.append(create_block(tip, coinbase, block_time))
            blocks[-1].solve()
            tip = blocks[-1].sha256
            snapshots.append(
                update_snapshot_with_tx(self.nodes[0], snapshots[-1], height,
                                        coinbase))
            block_time += 1
            height += 1

        test_node.send_header_for_blocks(blocks)
        test_node.sync_with_ping()
        test_node.wait_for_getdata([x.sha256 for x in blocks],
                                   timeout=DIRECT_FETCH_RESPONSE_TIME)

        [test_node.send_message(msg_block(x)) for x in blocks]

        test_node.sync_with_ping()

        # Now announce a header that forks the last two blocks
        tip = blocks[0].sha256
        snapshot_meta = snapshots[1]
        height -= 2
        blocks = []

        # Create extra blocks for later
        coins = get_unspent_coins(self.nodes[0], 20)
        for b in range(20):
            coinbase = self.create_coinbase(height, snapshot_meta.hash,
                                            coins[b])
            blocks.append(create_block(tip, coinbase, block_time))
            blocks[-1].solve()
            tip = blocks[-1].sha256
            snapshot_meta = update_snapshot_with_tx(self.nodes[0],
                                                    snapshot_meta, height,
                                                    coinbase)
            block_time += 1
            height += 1

        # Announcing one block on fork should not trigger direct fetch
        # (less work than tip)
        test_node.last_message.pop("getdata", None)
        test_node.send_header_for_blocks(blocks[0:1])
        test_node.sync_with_ping()
        with mininode_lock:
            assert "getdata" not in test_node.last_message

        # Announcing one more block on fork should trigger direct fetch for
        # both blocks (same work as tip)
        test_node.send_header_for_blocks(blocks[1:2])
        test_node.sync_with_ping()
        test_node.wait_for_getdata([x.sha256 for x in blocks[0:2]],
                                   timeout=DIRECT_FETCH_RESPONSE_TIME)

        # Announcing 16 more headers should trigger direct fetch for 14 more
        # blocks
        test_node.send_header_for_blocks(blocks[2:18])
        test_node.sync_with_ping()
        test_node.wait_for_getdata([x.sha256 for x in blocks[2:16]],
                                   timeout=DIRECT_FETCH_RESPONSE_TIME)

        # Announcing 1 more header should not trigger any response
        test_node.last_message.pop("getdata", None)
        test_node.send_header_for_blocks(blocks[18:19])
        test_node.sync_with_ping()
        with mininode_lock:
            assert "getdata" not in test_node.last_message

        self.log.info("Part 4: success!")

        # Now deliver all those blocks we announced.
        [test_node.send_message(msg_block(x)) for x in blocks]
        test_node.sync_with_ping()

        self.log.info("Part 5: Testing handling of unconnecting headers")
        # First we test that receipt of an unconnecting header doesn't prevent
        # chain sync.
        snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
        for i in range(10):
            self.log.debug("Part 5.{}: starting...".format(i))
            test_node.last_message.pop("getdata", None)
            blocks = []
            # Create two more blocks.
            coins = get_unspent_coins(self.nodes[0], 2)
            for j in range(2):
                coinbase = self.create_coinbase(height, snapshot_meta.hash,
                                                coins[j])
                blocks.append(create_block(tip, coinbase, block_time))
                blocks[-1].solve()
                tip = blocks[-1].sha256
                snapshot_meta = update_snapshot_with_tx(
                    self.nodes[0], snapshot_meta, height, coinbase)
                block_time += 1
                height += 1
            # Send the header of the second block -> this won't connect.
            with mininode_lock:
                test_node.last_message.pop("getheaders", None)
            test_node.send_header_for_blocks([blocks[1]])
            test_node.wait_for_getheaders()
            test_node.send_header_for_blocks(blocks)
            test_node.wait_for_getdata([x.sha256 for x in blocks])
            [test_node.send_message(msg_block(x)) for x in blocks]
            test_node.sync_with_ping()
            assert_equal(int(self.nodes[0].getbestblockhash(), 16),
                         blocks[1].sha256)

        blocks = []
        # Now we test that if we repeatedly don't send connecting headers, we
        # don't go into an infinite loop trying to get them to connect.
        MAX_UNCONNECTING_HEADERS = 10
        snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
        coins = get_unspent_coins(self.nodes[0], MAX_UNCONNECTING_HEADERS + 1)
        for j in range(MAX_UNCONNECTING_HEADERS + 1):
            coinbase = self.create_coinbase(height, snapshot_meta.hash,
                                            coins[j])
            blocks.append(create_block(tip, coinbase, block_time))
            blocks[-1].solve()
            tip = blocks[-1].sha256
            snapshot_meta = update_snapshot_with_tx(self.nodes[0],
                                                    snapshot_meta, height,
                                                    coinbase)
            block_time += 1
            height += 1

        for i in range(1, MAX_UNCONNECTING_HEADERS):
            # Send a header that doesn't connect, check that we get a getheaders.
            with mininode_lock:
                test_node.last_message.pop("getheaders", None)
            test_node.send_header_for_blocks([blocks[i]])
            test_node.wait_for_getheaders()

        # Next header will connect, should re-set our count:
        test_node.send_header_for_blocks([blocks[0]])

        # Remove the first two entries (blocks[1] would connect):
        blocks = blocks[2:]

        # Now try to see how many unconnecting headers we can send
        # before we get disconnected.  Should be 5*MAX_UNCONNECTING_HEADERS
        for i in range(5 * MAX_UNCONNECTING_HEADERS - 1):
            # Send a header that doesn't connect, check that we get a getheaders.
            with mininode_lock:
                test_node.last_message.pop("getheaders", None)
            test_node.send_header_for_blocks([blocks[i % len(blocks)]])
            test_node.wait_for_getheaders()

        # Eventually this stops working.
        test_node.send_header_for_blocks([blocks[-1]])

        # Should get disconnected
        test_node.wait_for_disconnect()

        self.log.info("Part 5: success!")

        # Finally, check that the inv node never received a getdata request,
        # throughout the test
        assert "getdata" not in inv_node.last_message
コード例 #6
0
    def run_test(self):

        # Create a block with 2500 stakeable outputs
        self.build_coins_to_stake()

        # Propagate it to nodes 1 and 2 and stop them for now
        self.sync_first_block()

        # Key Management for node 0
        keytool = KeyTool.for_node(self.nodes[0])

        # Connect to node0
        p2p0 = self.nodes[0].add_p2p_connection(BaseNode())

        # Build the blockchain
        self.tip = int(self.nodes[0].getbestblockhash(), 16)
        self.block_time = self.nodes[0].getblock(
            self.nodes[0].getbestblockhash())['time'] + 1

        self.blocks = []

        # Get a pubkey for the coinbase TXO
        coinbase_key = keytool.make_privkey()
        coinbase_pubkey = bytes(coinbase_key.get_pubkey())

        keytool.upload_key(coinbase_key)

        self.log.info(
            "Create the first block with a coinbase output to our key")
        height = 2
        snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
        coin = self.get_coin_to_stake()
        coinbase = sign_coinbase(
            self.nodes[0],
            create_coinbase(height, coin, snapshot_meta.hash, coinbase_pubkey))
        block = create_block(self.tip, coinbase, self.block_time)
        self.blocks.append(block)
        self.block_time += 1
        block.solve()
        # Save the coinbase for later
        self.block1 = block
        self.tip = block.sha256

        utxo1 = UTXO(height, TxType.COINBASE, COutPoint(coinbase.sha256, 0),
                     coinbase.vout[0])
        snapshot_meta = update_snapshot_with_tx(self.nodes[0], snapshot_meta,
                                                height, coinbase)
        height += 1

        self.log.info(
            "Bury the block 100 deep so the coinbase output is spendable")
        for i in range(100):
            coin = self.get_coin_to_stake()
            coinbase = sign_coinbase(
                self.nodes[0],
                create_coinbase(height, coin, snapshot_meta.hash,
                                coinbase_pubkey))
            block = create_block(self.tip, coinbase, self.block_time)
            block.solve()
            self.blocks.append(block)
            self.tip = block.sha256
            self.block_time += 1
            snapshot_meta = update_snapshot_with_tx(self.nodes[0],
                                                    snapshot_meta, height,
                                                    coinbase)
            height += 1

        self.log.info(
            "Create a transaction spending the coinbase output with an invalid (null) signature"
        )
        tx = CTransaction()
        tx.vin.append(
            CTxIn(COutPoint(self.block1.vtx[0].sha256, 0), scriptSig=b""))
        tx.vout.append(
            CTxOut((PROPOSER_REWARD - 1) * 100000000, CScript([OP_TRUE])))
        tx.calc_sha256()

        coin = self.get_coin_to_stake()
        coinbase = sign_coinbase(
            self.nodes[0],
            create_coinbase(height, coin, snapshot_meta.hash, coinbase_pubkey))
        block102 = create_block(self.tip, coinbase, self.block_time)
        self.block_time += 1
        block102.vtx.extend([tx])
        block102.compute_merkle_trees()
        block102.rehash()
        block102.solve()
        self.blocks.append(block102)
        self.tip = block102.sha256
        self.block_time += 1

        snapshot_meta = update_snapshot_with_tx(self.nodes[0], snapshot_meta,
                                                height, coinbase)

        utxo2 = UTXO(height, tx.get_type(), COutPoint(tx.sha256, 0),
                     tx.vout[0])
        snapshot_meta = calc_snapshot_hash(self.nodes[0], snapshot_meta,
                                           height, [utxo1], [utxo2])

        height += 1

        self.log.info("Bury the assumed valid block 2100 deep")
        for i in range(2100):
            coin = self.get_coin_to_stake()
            coinbase = sign_coinbase(
                self.nodes[0],
                create_coinbase(height, coin, snapshot_meta.hash,
                                coinbase_pubkey))
            block = create_block(self.tip, coinbase, self.block_time)
            block.nVersion = 4
            block.solve()
            self.blocks.append(block)
            self.tip = block.sha256
            self.block_time += 1
            snapshot_meta = update_snapshot_with_tx(self.nodes[0],
                                                    snapshot_meta, height,
                                                    coinbase)
            height += 1

        self.nodes[0].disconnect_p2ps()

        self.log.info(
            "Start node1 and node2 with assumevalid so they accept a block with a bad signature."
        )
        self.start_node(1, extra_args=["-assumevalid=" + hex(block102.sha256)])
        self.start_node(2, extra_args=["-assumevalid=" + hex(block102.sha256)])

        p2p0 = self.nodes[0].add_p2p_connection(BaseNode())
        p2p1 = self.nodes[1].add_p2p_connection(BaseNode())
        p2p2 = self.nodes[2].add_p2p_connection(BaseNode())

        # send header lists to all three nodes
        p2p0.send_header_for_blocks(self.blocks[0:2000])
        p2p0.send_header_for_blocks(self.blocks[2000:])
        p2p1.send_header_for_blocks(self.blocks[0:2000])
        p2p1.send_header_for_blocks(self.blocks[2000:])
        p2p2.send_header_for_blocks(self.blocks[0:200])

        self.log.info("Send blocks to node0. Block 103 will be rejected.")
        self.send_blocks_until_disconnected(p2p0)
        self.assert_blockchain_height(self.nodes[0], 102)

        self.log.info("Send all blocks to node1. All blocks will be accepted.")
        for i in range(2202):
            p2p1.send_message(msg_block(self.blocks[i]))
        # Syncing 2200 blocks can take a while on slow systems. Give it plenty of time to sync.
        p2p1.sync_with_ping(120)
        assert_equal(
            self.nodes[1].getblock(self.nodes[1].getbestblockhash())['height'],
            2203)

        self.log.info("Send blocks to node2. Block 102 will be rejected.")
        self.send_blocks_until_disconnected(p2p2)
        self.assert_blockchain_height(self.nodes[2], 102)
コード例 #7
0
ファイル: example_test.py プロジェクト: AM5800/unit-e
    def run_test(self):
        """Main test logic"""

        # Create P2P connections to two of the nodes
        self.nodes[0].add_p2p_connection(BaseNode())

        # Start up network handling in another thread. This needs to be called
        # after the P2P connections have been created.
        network_thread_start()
        # wait_for_verack ensures that the P2P connection is fully up.
        self.nodes[0].p2p.wait_for_verack()

        self.setup_stake_coins(self.nodes[0])

        # Generating a block on one of the nodes will get us out of IBD
        blocks = [int(self.nodes[0].generate(nblocks=1)[0], 16)]
        self.sync_all([self.nodes[0:1]])

        # Notice above how we called an RPC by calling a method with the same
        # name on the node object. Notice also how we used a keyword argument
        # to specify a named RPC argument. Neither of those are defined on the
        # node object. Instead there's some __getattr__() magic going on under
        # the covers to dispatch unrecognised attribute calls to the RPC
        # interface.

        # Logs are nice. Do plenty of them. They can be used in place of comments for
        # breaking the test into sub-sections.
        self.log.info("Starting test!")

        self.log.info("Calling a custom function")
        custom_function()

        self.log.info("Calling a custom method")
        self.custom_method()

        self.log.info("Create some blocks")
        self.tip = int(self.nodes[0].getbestblockhash(), 16)
        self.block_time = self.nodes[0].getblock(
            self.nodes[0].getbestblockhash())['time'] + 1

        height = self.nodes[0].getblockcount()

        snapshot_meta = get_tip_snapshot_meta(self.nodes[0])
        stakes = self.nodes[0].listunspent()
        for stake in stakes:
            # Use the mininode and blocktools functionality to manually build a block
            # Calling the generate() rpc is easier, but this allows us to exactly
            # control the blocks and transactions.
            coinbase = sign_coinbase(
                self.nodes[0],
                create_coinbase(height, stake, snapshot_meta.hash))
            block = create_block(self.tip, coinbase, self.block_time)
            # Wait until the active chain picks up the previous block
            wait_until(lambda: self.nodes[0].getblockcount() == height,
                       timeout=5)
            snapshot_meta = update_snapshot_with_tx(self.nodes[0],
                                                    snapshot_meta, height + 1,
                                                    coinbase)
            block.solve()
            block_message = msg_block(block)
            # Send message is used to send a P2P message to the node over our P2PInterface
            self.nodes[0].p2p.send_message(block_message)
            self.tip = block.sha256
            blocks.append(self.tip)
            self.block_time += 1
            height += 1

        self.log.info(
            "Wait for node1 to reach current tip (height %d) using RPC" %
            height)
        self.nodes[1].waitforblockheight(height)

        self.log.info("Connect node2 and node1")
        connect_nodes(self.nodes[1], 2)

        self.log.info("Add P2P connection to node2")
        # We can't add additional P2P connections once the network thread has started. Disconnect the connection
        # to node0, wait for the network thread to terminate, then connect to node2. This is specific to
        # the current implementation of the network thread and may be improved in future.
        self.nodes[0].disconnect_p2ps()
        network_thread_join()

        self.nodes[2].add_p2p_connection(BaseNode())
        network_thread_start()
        self.nodes[2].p2p.wait_for_verack()

        self.log.info(
            "Wait for node2 reach current tip. Test that it has propagated all the blocks to us"
        )

        getdata_request = msg_getdata()
        for block in blocks:
            getdata_request.inv.append(CInv(2, block))
        self.nodes[2].p2p.send_message(getdata_request)

        # wait_until() will loop until a predicate condition is met. Use it to test properties of the
        # P2PInterface objects.
        wait_until(lambda: sorted(blocks) == sorted(
            list(self.nodes[2].p2p.block_receive_map.keys())),
                   timeout=5,
                   lock=mininode_lock)

        self.log.info("Check that each block was received only once")
        # The network thread uses a global lock on data access to the P2PConnection objects when sending and receiving
        # messages. The test thread should acquire the global lock before accessing any P2PConnection data to avoid locking
        # and synchronization issues. Note wait_until() acquires this global lock when testing the predicate.
        with mininode_lock:
            for block in self.nodes[2].p2p.block_receive_map.values():
                assert_equal(block, 1)