コード例 #1
0
    def run_test(self):
        # Mine some blocks and have them mature.
        self.generate(self.nodes[0], COINBASE_MATURITY + 1)
        utxo = self.nodes[0].listunspent(10)
        txid = utxo[0]['txid']
        vout = utxo[0]['vout']
        value = utxo[0]['amount']

        fee = Decimal("0.0002")
        # MAX_ANCESTORS transactions off a confirmed tx should be fine
        chain = []
        for _ in range(4):
            (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [vout], value, fee, 2)
            vout = 0
            value = sent_value
            chain.append([txid, value])
        for _ in range(MAX_ANCESTORS - 4):
            (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [0], value, fee, 1)
            value = sent_value
            chain.append([txid, value])
        (second_chain, second_chain_value) = chain_transaction(self.nodes[0], [utxo[1]['txid']], [utxo[1]['vout']], utxo[1]['amount'], fee, 1)

        # Check mempool has MAX_ANCESTORS + 1 transactions in it
        assert_equal(len(self.nodes[0].getrawmempool()), MAX_ANCESTORS + 1)

        # Adding one more transaction on to the chain should fail.
        assert_raises_rpc_error(-26, "too-long-mempool-chain, too many unconfirmed ancestors [limit: 25]", chain_transaction, self.nodes[0], [txid], [0], value, fee, 1)
        # ...even if it chains on from some point in the middle of the chain.
        assert_raises_rpc_error(-26, "too-long-mempool-chain, too many descendants", chain_transaction, self.nodes[0], [chain[2][0]], [1], chain[2][1], fee, 1)
        assert_raises_rpc_error(-26, "too-long-mempool-chain, too many descendants", chain_transaction, self.nodes[0], [chain[1][0]], [1], chain[1][1], fee, 1)
        # ...even if it chains on to two parent transactions with one in the chain.
        assert_raises_rpc_error(-26, "too-long-mempool-chain, too many descendants", chain_transaction, self.nodes[0], [chain[0][0], second_chain], [1, 0], chain[0][1] + second_chain_value, fee, 1)
        # ...especially if its > 40k weight
        assert_raises_rpc_error(-26, "too-long-mempool-chain, too many descendants", chain_transaction, self.nodes[0], [chain[0][0]], [1], chain[0][1], fee, 350)
        # But not if it chains directly off the first transaction
        (replacable_txid, replacable_orig_value) = chain_transaction(self.nodes[0], [chain[0][0]], [1], chain[0][1], fee, 1)
        # and the second chain should work just fine
        chain_transaction(self.nodes[0], [second_chain], [0], second_chain_value, fee, 1)

        # Make sure we can RBF the chain which used our carve-out rule
        second_tx_outputs = {self.nodes[0].getrawtransaction(replacable_txid, True)["vout"][0]['scriptPubKey']['address']: replacable_orig_value - (Decimal(1) / Decimal(100))}
        second_tx = self.nodes[0].createrawtransaction([{'txid': chain[0][0], 'vout': 1}], second_tx_outputs)
        signed_second_tx = self.nodes[0].signrawtransactionwithwallet(second_tx)
        self.nodes[0].sendrawtransaction(signed_second_tx['hex'])

        # Finally, check that we added two transactions
        assert_equal(len(self.nodes[0].getrawmempool()), MAX_ANCESTORS + 3)
コード例 #2
0
ファイル: mempool_packages.py プロジェクト: schurteb/bitcoin
    def run_test(self):
        # Mine some blocks and have them mature.
        peer_inv_store = self.nodes[0].add_p2p_connection(
            P2PTxInvStore())  # keep track of invs
        self.generate(self.nodes[0], COINBASE_MATURITY + 1)
        utxo = self.nodes[0].listunspent(10)
        txid = utxo[0]['txid']
        vout = utxo[0]['vout']
        value = utxo[0]['amount']
        assert 'ancestorcount' not in utxo[0]
        assert 'ancestorsize' not in utxo[0]
        assert 'ancestorfees' not in utxo[0]

        fee = Decimal("0.0001")
        # MAX_ANCESTORS transactions off a confirmed tx should be fine
        chain = []
        witness_chain = []
        ancestor_vsize = 0
        ancestor_fees = Decimal(0)
        for i in range(MAX_ANCESTORS):
            (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [0],
                                                   value, fee, 1)
            value = sent_value
            chain.append(txid)
            # We need the wtxids to check P2P announcements
            witnesstx = self.nodes[0].gettransaction(txid=txid,
                                                     verbose=True)['decoded']
            witness_chain.append(witnesstx['hash'])

            # Check that listunspent ancestor{count, size, fees} yield the correct results
            wallet_unspent = self.nodes[0].listunspent(minconf=0)
            this_unspent = next(utxo_info for utxo_info in wallet_unspent
                                if utxo_info['txid'] == txid)
            assert_equal(this_unspent['ancestorcount'], i + 1)
            ancestor_vsize += self.nodes[0].getrawtransaction(
                txid=txid, verbose=True)['vsize']
            assert_equal(this_unspent['ancestorsize'], ancestor_vsize)
            ancestor_fees -= self.nodes[0].gettransaction(txid=txid)['fee']
            assert_equal(this_unspent['ancestorfees'], ancestor_fees * COIN)

        # Wait until mempool transactions have passed initial broadcast (sent inv and received getdata)
        # Otherwise, getrawmempool may be inconsistent with getmempoolentry if unbroadcast changes in between
        peer_inv_store.wait_for_broadcast(witness_chain)

        # Check mempool has MAX_ANCESTORS transactions in it, and descendant and ancestor
        # count and fees should look correct
        mempool = self.nodes[0].getrawmempool(True)
        assert_equal(len(mempool), MAX_ANCESTORS)
        descendant_count = 1
        descendant_fees = 0
        descendant_vsize = 0

        assert_equal(ancestor_vsize,
                     sum([mempool[tx]['vsize'] for tx in mempool]))
        ancestor_count = MAX_ANCESTORS
        assert_equal(ancestor_fees,
                     sum([mempool[tx]['fee'] for tx in mempool]))

        descendants = []
        ancestors = list(chain)
        for x in reversed(chain):
            # Check that getmempoolentry is consistent with getrawmempool
            entry = self.nodes[0].getmempoolentry(x)
            assert_equal(entry, mempool[x])

            # Check that the descendant calculations are correct
            assert_equal(entry['descendantcount'], descendant_count)
            descendant_fees += entry['fee']
            assert_equal(entry['modifiedfee'], entry['fee'])
            assert_equal(entry['fees']['base'], entry['fee'])
            assert_equal(entry['fees']['modified'], entry['modifiedfee'])
            assert_equal(entry['descendantfees'], descendant_fees * COIN)
            assert_equal(entry['fees']['descendant'], descendant_fees)
            descendant_vsize += entry['vsize']
            assert_equal(entry['descendantsize'], descendant_vsize)
            descendant_count += 1

            # Check that ancestor calculations are correct
            assert_equal(entry['ancestorcount'], ancestor_count)
            assert_equal(entry['ancestorfees'], ancestor_fees * COIN)
            assert_equal(entry['ancestorsize'], ancestor_vsize)
            ancestor_vsize -= entry['vsize']
            ancestor_fees -= entry['fee']
            ancestor_count -= 1

            # Check that parent/child list is correct
            assert_equal(entry['spentby'], descendants[-1:])
            assert_equal(entry['depends'], ancestors[-2:-1])

            # Check that getmempooldescendants is correct
            assert_equal(sorted(descendants),
                         sorted(self.nodes[0].getmempooldescendants(x)))

            # Check getmempooldescendants verbose output is correct
            for descendant, dinfo in self.nodes[0].getmempooldescendants(
                    x, True).items():
                assert_equal(dinfo['depends'],
                             [chain[chain.index(descendant) - 1]])
                if dinfo['descendantcount'] > 1:
                    assert_equal(dinfo['spentby'],
                                 [chain[chain.index(descendant) + 1]])
                else:
                    assert_equal(dinfo['spentby'], [])
            descendants.append(x)

            # Check that getmempoolancestors is correct
            ancestors.remove(x)
            assert_equal(sorted(ancestors),
                         sorted(self.nodes[0].getmempoolancestors(x)))

            # Check that getmempoolancestors verbose output is correct
            for ancestor, ainfo in self.nodes[0].getmempoolancestors(
                    x, True).items():
                assert_equal(ainfo['spentby'],
                             [chain[chain.index(ancestor) + 1]])
                if ainfo['ancestorcount'] > 1:
                    assert_equal(ainfo['depends'],
                                 [chain[chain.index(ancestor) - 1]])
                else:
                    assert_equal(ainfo['depends'], [])

        # Check that getmempoolancestors/getmempooldescendants correctly handle verbose=true
        v_ancestors = self.nodes[0].getmempoolancestors(chain[-1], True)
        assert_equal(len(v_ancestors), len(chain) - 1)
        for x in v_ancestors.keys():
            assert_equal(mempool[x], v_ancestors[x])
        assert chain[-1] not in v_ancestors.keys()

        v_descendants = self.nodes[0].getmempooldescendants(chain[0], True)
        assert_equal(len(v_descendants), len(chain) - 1)
        for x in v_descendants.keys():
            assert_equal(mempool[x], v_descendants[x])
        assert chain[0] not in v_descendants.keys()

        # Check that ancestor modified fees includes fee deltas from
        # prioritisetransaction
        self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=1000)
        ancestor_fees = 0
        for x in chain:
            entry = self.nodes[0].getmempoolentry(x)
            ancestor_fees += entry['fee']
            assert_equal(entry['fees']['ancestor'],
                         ancestor_fees + Decimal('0.00001'))
            assert_equal(entry['ancestorfees'], ancestor_fees * COIN + 1000)

        # Undo the prioritisetransaction for later tests
        self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=-1000)

        # Check that descendant modified fees includes fee deltas from
        # prioritisetransaction
        self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=1000)

        descendant_fees = 0
        for x in reversed(chain):
            entry = self.nodes[0].getmempoolentry(x)
            descendant_fees += entry['fee']
            assert_equal(entry['fees']['descendant'],
                         descendant_fees + Decimal('0.00001'))
            assert_equal(entry['descendantfees'],
                         descendant_fees * COIN + 1000)

        # Adding one more transaction on to the chain should fail.
        assert_raises_rpc_error(-26, "too-long-mempool-chain",
                                chain_transaction, self.nodes[0], [txid],
                                [vout], value, fee, 1)

        # Check that prioritising a tx before it's added to the mempool works
        # First clear the mempool by mining a block.
        self.generate(self.nodes[0], 1)
        self.sync_blocks()
        assert_equal(len(self.nodes[0].getrawmempool()), 0)
        # Prioritise a transaction that has been mined, then add it back to the
        # mempool by using invalidateblock.
        self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=2000)
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        # Keep node1's tip synced with node0
        self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())

        # Now check that the transaction is in the mempool, with the right modified fee
        descendant_fees = 0
        for x in reversed(chain):
            entry = self.nodes[0].getmempoolentry(x)
            descendant_fees += entry['fee']
            if (x == chain[-1]):
                assert_equal(entry['modifiedfee'],
                             entry['fee'] + Decimal("0.00002"))
                assert_equal(entry['fees']['modified'],
                             entry['fee'] + Decimal("0.00002"))
            assert_equal(entry['descendantfees'],
                         descendant_fees * COIN + 2000)
            assert_equal(entry['fees']['descendant'],
                         descendant_fees + Decimal("0.00002"))

        # Check that node1's mempool is as expected (-> custom ancestor limit)
        mempool0 = self.nodes[0].getrawmempool(False)
        mempool1 = self.nodes[1].getrawmempool(False)
        assert_equal(len(mempool1), MAX_ANCESTORS_CUSTOM)
        assert set(mempool1).issubset(set(mempool0))
        for tx in chain[:MAX_ANCESTORS_CUSTOM]:
            assert tx in mempool1
        # TODO: more detailed check of node1's mempool (fees etc.)
        # check transaction unbroadcast info (should be false if in both mempools)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        # TODO: test ancestor size limits

        # Now test descendant chain limits
        txid = utxo[1]['txid']
        value = utxo[1]['amount']
        vout = utxo[1]['vout']

        transaction_package = []
        tx_children = []
        # First create one parent tx with 10 children
        (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [vout],
                                               value, fee, 10)
        parent_transaction = txid
        for i in range(10):
            transaction_package.append({
                'txid': txid,
                'vout': i,
                'amount': sent_value
            })

        # Sign and send up to MAX_DESCENDANT transactions chained off the parent tx
        chain = [
        ]  # save sent txs for the purpose of checking node1's mempool later (see below)
        for _ in range(MAX_DESCENDANTS - 1):
            utxo = transaction_package.pop(0)
            (txid, sent_value) = chain_transaction(self.nodes[0],
                                                   [utxo['txid']],
                                                   [utxo['vout']],
                                                   utxo['amount'], fee, 10)
            chain.append(txid)
            if utxo['txid'] is parent_transaction:
                tx_children.append(txid)
            for j in range(10):
                transaction_package.append({
                    'txid': txid,
                    'vout': j,
                    'amount': sent_value
                })

        mempool = self.nodes[0].getrawmempool(True)
        assert_equal(mempool[parent_transaction]['descendantcount'],
                     MAX_DESCENDANTS)
        assert_equal(sorted(mempool[parent_transaction]['spentby']),
                     sorted(tx_children))

        for child in tx_children:
            assert_equal(mempool[child]['depends'], [parent_transaction])

        # Sending one more chained transaction will fail
        utxo = transaction_package.pop(0)
        assert_raises_rpc_error(-26, "too-long-mempool-chain",
                                chain_transaction, self.nodes[0],
                                [utxo['txid']], [utxo['vout']], utxo['amount'],
                                fee, 10)

        # Check that node1's mempool is as expected, containing:
        # - txs from previous ancestor test (-> custom ancestor limit)
        # - parent tx for descendant test
        # - txs chained off parent tx (-> custom descendant limit)
        self.wait_until(lambda: len(self.nodes[1].getrawmempool()) ==
                        MAX_ANCESTORS_CUSTOM + 1 + MAX_DESCENDANTS_CUSTOM,
                        timeout=10)
        mempool0 = self.nodes[0].getrawmempool(False)
        mempool1 = self.nodes[1].getrawmempool(False)
        assert set(mempool1).issubset(set(mempool0))
        assert parent_transaction in mempool1
        for tx in chain[:MAX_DESCENDANTS_CUSTOM]:
            assert tx in mempool1
        for tx in chain[MAX_DESCENDANTS_CUSTOM:]:
            assert tx not in mempool1
        # TODO: more detailed check of node1's mempool (fees etc.)

        # TODO: test descendant size limits

        # Test reorg handling
        # First, the basics:
        self.generate(self.nodes[0], 1)
        self.sync_blocks()
        self.nodes[1].invalidateblock(self.nodes[0].getbestblockhash())
        self.nodes[1].reconsiderblock(self.nodes[0].getbestblockhash())

        # Now test the case where node1 has a transaction T in its mempool that
        # depends on transactions A and B which are in a mined block, and the
        # block containing A and B is disconnected, AND B is not accepted back
        # into node1's mempool because its ancestor count is too high.

        # Create 8 transactions, like so:
        # Tx0 -> Tx1 (vout0)
        #   \--> Tx2 (vout1) -> Tx3 -> Tx4 -> Tx5 -> Tx6 -> Tx7
        #
        # Mine them in the next block, then generate a new tx8 that spends
        # Tx1 and Tx7, and add to node1's mempool, then disconnect the
        # last block.

        # Create tx0 with 2 outputs
        utxo = self.nodes[0].listunspent()
        txid = utxo[0]['txid']
        value = utxo[0]['amount']
        vout = utxo[0]['vout']

        send_value = (value - fee) / 2
        inputs = [{'txid': txid, 'vout': vout}]
        outputs = {}
        for _ in range(2):
            outputs[self.nodes[0].getnewaddress()] = send_value
        rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx)
        txid = self.nodes[0].sendrawtransaction(signedtx['hex'])
        tx0_id = txid
        value = send_value

        # Create tx1
        tx1_id, _ = chain_transaction(self.nodes[0], [tx0_id], [0], value, fee,
                                      1)

        # Create tx2-7
        vout = 1
        txid = tx0_id
        for _ in range(6):
            (txid, sent_value) = chain_transaction(self.nodes[0], [txid],
                                                   [vout], value, fee, 1)
            vout = 0
            value = sent_value

        # Mine these in a block
        self.generate(self.nodes[0], 1)
        self.sync_all()

        # Now generate tx8, with a big fee
        inputs = [{'txid': tx1_id, 'vout': 0}, {'txid': txid, 'vout': 0}]
        outputs = {self.nodes[0].getnewaddress(): send_value + value - 4 * fee}
        rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx)
        txid = self.nodes[0].sendrawtransaction(signedtx['hex'])
        self.sync_mempools()

        # Now try to disconnect the tip on each node...
        self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        self.sync_blocks()