コード例 #1
0
ファイル: mempool_limit.py プロジェクト: GameLoverZ/MogCoin
    def run_test(self):
        txouts = gen_return_txouts()
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        self.log.info('Check that mempoolminfee is minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'],
                     Decimal('0.00001000'))
        assert_equal(self.nodes[0].getmempoolinfo()['mempoolminfee'],
                     Decimal('0.00001000'))

        txids = []
        utxos = create_confirmed_utxos(relayfee, self.nodes[0], 91)

        self.log.info('Create a mempool tx that will be evicted')
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress(): 0.0001}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        self.nodes[0].settxfee(
            relayfee)  # specifically fund this tx with low fee
        txF = self.nodes[0].fundrawtransaction(tx)
        self.nodes[0].settxfee(0)  # return to automatic fee selection
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        txid = self.nodes[0].sendrawtransaction(txFS['hex'])

        relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        base_fee = relayfee * 100
        for i in range(3):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(
                self.nodes[0], txouts, utxos[30 * i:30 * i + 30], 30,
                (i + 1) * base_fee)

        self.log.info('The tx should be evicted by now')
        assert (txid not in self.nodes[0].getrawmempool())
        txdata = self.nodes[0].gettransaction(txid)
        assert (txdata['confirmations'] == 0)  #confirmation should still be 0

        self.log.info('Check that mempoolminfee is larger than minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'],
                     Decimal('0.00001000'))
        assert_greater_than(self.nodes[0].getmempoolinfo()['mempoolminfee'],
                            Decimal('0.00001000'))

        self.log.info('Create a mempool tx that will not pass mempoolminfee')
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress(): 0.0001}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        # specifically fund this tx with a fee < mempoolminfee, >= than minrelaytxfee
        txF = self.nodes[0].fundrawtransaction(tx, {'feeRate': relayfee})
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        assert_raises_rpc_error(-26, "mempool min fee not met",
                                self.nodes[0].sendrawtransaction, txFS['hex'])
コード例 #2
0
    def run_test(self):
        txouts = gen_return_txouts()
        node = self.nodes[0]
        miniwallet = MiniWallet(node)
        relayfee = node.getnetworkinfo()['relayfee']

        self.log.info('Check that mempoolminfee is minrelaytxfee')
        assert_equal(node.getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000'))
        assert_equal(node.getmempoolinfo()['mempoolminfee'], Decimal('0.00001000'))

        tx_batch_size = 25
        num_of_batches = 3
        # Generate UTXOs to flood the mempool
        # 1 to create a tx initially that will be evicted from the mempool later
        # 3 batches of multiple transactions with a fee rate much higher than the previous UTXO
        # And 1 more to verify that this tx does not get added to the mempool with a fee rate less than the mempoolminfee
        self.generate(miniwallet, 1 + (num_of_batches * tx_batch_size) + 1)

        # Mine 99 blocks so that the UTXOs are allowed to be spent
        self.generate(node, COINBASE_MATURITY - 1)

        self.log.info('Create a mempool tx that will be evicted')
        tx_to_be_evicted_id = miniwallet.send_self_transfer(from_node=node, fee_rate=relayfee)["txid"]

        # Increase the tx fee rate to give the subsequent transactions a higher priority in the mempool
        # The tx has an approx. vsize of 65k, i.e. multiplying the previous fee rate (in sats/kvB)
        # by 130 should result in a fee that corresponds to 2x of that fee rate
        base_fee = relayfee * 130

        self.log.info("Fill up the mempool with txs with higher fee rate")
        for batch_of_txid in range(num_of_batches):
            fee = (batch_of_txid + 1) * base_fee
            create_lots_of_big_transactions(miniwallet, node, fee, tx_batch_size, txouts)

        self.log.info('The tx should be evicted by now')
        # The number of transactions created should be greater than the ones present in the mempool
        assert_greater_than(tx_batch_size * num_of_batches, len(node.getrawmempool()))
        # Initial tx created should not be present in the mempool anymore as it had a lower fee rate
        assert tx_to_be_evicted_id not in node.getrawmempool()

        self.log.info('Check that mempoolminfee is larger than minrelaytxfee')
        assert_equal(node.getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000'))
        assert_greater_than(node.getmempoolinfo()['mempoolminfee'], Decimal('0.00001000'))

        # Deliberately try to create a tx with a fee less than the minimum mempool fee to assert that it does not get added to the mempool
        self.log.info('Create a mempool tx that will not pass mempoolminfee')
        assert_raises_rpc_error(-26, "mempool min fee not met", miniwallet.send_self_transfer, from_node=node, fee_rate=relayfee)

        self.log.info('Test passing a value below the minimum (5 MB) to -maxmempool throws an error')
        self.stop_node(0)
        self.nodes[0].assert_start_raises_init_error(["-maxmempool=4"], "Error: -maxmempool must be at least 5 MB")
コード例 #3
0
    def run_test(self):
        txouts = gen_return_txouts()
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        txids = []
        utxos = create_confirmed_utxos(relayfee, self.nodes[0],
                                       self.thirtyTransactions * 30)

        # create a mempool tx that will be evicted
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress(): 0.1}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)

        # Any fee calc method should work as longs as base_fee is set proportionally...

        # 1
        tx_f = self.nodes[0].fundrawtransaction(tx)
        base_fee = satoshi_round(
            0.01025 * 100
        )  # DEFAULT_FALLBACK_FEE (settxfee(0) is default and falls through to this)

        # 2
        # self.nodes[0].settxfee(relayfee)  # specifically fund this tx with low fee (this is too low and will be bumped to MINFEE)
        # tx_f = self.nodes[0].fundrawtransaction(tx)
        # base_fee = satoshi_round(0.0005*100)  # DEFAULT_TRANSACTION_MINFEE
        # self.nodes[0].settxfee(0) # return to automatic fee selection

        # 3
        # tx_f = self.nodes[0].fundrawtransaction(tx, {"feeRate": relayfee})
        # relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        # base_fee = relayfee*100

        tx_fs = self.nodes[0].signrawtransaction(tx_f['hex'])
        txid = self.nodes[0].sendrawtransaction(tx_fs['hex'])

        for i in range(self.thirtyTransactions):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(
                self.nodes[0], txouts, utxos[30 * i:30 * i + 30], 30,
                (i + 1) * base_fee)

        # by now, the tx should be evicted, check confirmation state
        assert (txid not in self.nodes[0].getrawmempool())
        txdata = self.nodes[0].gettransaction(txid)
        assert (txdata['confirmations'] == 0)  # confirmation should still be 0
コード例 #4
0
    def run_test(self):
        txouts = gen_return_txouts()
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        self.log.info('Check that mempoolminfee is minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000'))
        assert_equal(self.nodes[0].getmempoolinfo()['mempoolminfee'], Decimal('0.00001000'))

        txids = []
        utxos = create_confirmed_utxos(relayfee, self.nodes[0], 91)

        self.log.info('Create a mempool tx that will be evicted')
        us0 = utxos.pop()
        inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress() : 0.0001}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        self.nodes[0].settxfee(relayfee) # specifically fund this tx with low fee
        txF = self.nodes[0].fundrawtransaction(tx)
        self.nodes[0].settxfee(0) # return to automatic fee selection
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        txid = self.nodes[0].sendrawtransaction(txFS['hex'])

        relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        base_fee = relayfee*100
        for i in range (3):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(self.nodes[0], txouts, utxos[30*i:30*i+30], 30, (i+1)*base_fee)

        self.log.info('The tx should be evicted by now')
        assert(txid not in self.nodes[0].getrawmempool())
        txdata = self.nodes[0].gettransaction(txid)
        assert(txdata['confirmations'] ==  0) #confirmation should still be 0

        self.log.info('Check that mempoolminfee is larger than minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000'))
        assert_greater_than(self.nodes[0].getmempoolinfo()['mempoolminfee'], Decimal('0.00001000'))

        self.log.info('Create a mempool tx that will not pass mempoolminfee')
        us0 = utxos.pop()
        inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress() : 0.0001}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        # specifically fund this tx with a fee < mempoolminfee, >= than minrelaytxfee
        txF = self.nodes[0].fundrawtransaction(tx, {'feeRate': relayfee})
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        assert_raises_rpc_error(-26, "mempool min fee not met", self.nodes[0].sendrawtransaction, txFS['hex'])
コード例 #5
0
    def generate_high_priotransactions(self, node, count):
        # generate a bunch of spendable utxos
        self.txouts = gen_return_txouts()
        # create 150 simple one input one output hi prio txns
        hiprio_utxo_count = 150
        age = 250
        # be sure to make this utxo aged enough
        hiprio_utxos = create_confirmed_utxos(node, hiprio_utxo_count, age)
        txids = []

        # Create hiprio_utxo_count number of txns with 0 fee
        range_size = [0, hiprio_utxo_count]
        start_range = range_size[0]
        end_range = range_size[1]
        txids = self.create_small_transactions(
            node, hiprio_utxos[start_range:end_range], end_range - start_range,
            0)
        return txids
コード例 #6
0
    def run_test(self):
        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '', 0, 0,
                                0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-1,
                                "txid must be hexadecimal string",
                                self.nodes[0].prioritisetransaction,
                                txid='foo',
                                fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected",
                                self.nodes[0].prioritisetransaction, txid,
                                'foo', 0)
        assert_raises_rpc_error(
            -8,
            "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.",
            self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1,
                                "JSON value is not an integer as expected",
                                self.nodes[0].prioritisetransaction,
                                txid=txid,
                                fee_delta='foo')

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0],
                                       utxo_count)
        base_fee = self.relayfee * 100  # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(
                self.nodes[0], self.txouts, utxos[start_range:end_range],
                end_range - start_range, (i + 1) * base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert (j in mempool)
                sizes[i] += mempool[j]['size']
            assert (sizes[i] > MAX_BLOCK_BASE_SIZE)  # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0],
                                            fee_delta=int(3 * base_fee * COIN))

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert (txids[0][0] not in mempool)
        assert (txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert (high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction so that it's now low fee).
        self.nodes[0].prioritisetransaction(
            txid=high_fee_tx, fee_delta=-int(2 * base_fee * COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert (high_fee_tx in mempool)

        # Now verify the modified-high feerate transaction isn't mined before
        # the other high fee transactions. Keep mining until our mempool has
        # decreased by all the high fee size that we calculated above.
        while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
            self.nodes[0].generate(1)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        self.log.info(
            "Assert that de-prioritised transaction is still in mempool")
        assert (high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert (x not in mempool)

        # Create a free transaction.  Should be rejected.
        utxo_list = self.nodes[0].listunspent()
        assert (len(utxo_list) > 0)
        utxo = utxo_list[0]

        inputs = []
        outputs = {}
        inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]})
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"]
        raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
        tx_hex = self.nodes[0].signrawtransactionwithwallet(raw_tx)["hex"]
        tx_id = self.nodes[0].decoderawtransaction(tx_hex)["txid"]

        # This will raise an exception due to min relay fee not being met
        assert_raises_rpc_error(-26, "min relay fee not met",
                                self.nodes[0].sendrawtransaction, tx_hex)
        assert (tx_id not in self.nodes[0].getrawmempool())

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000-byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(txid=tx_id,
                                            fee_delta=int(self.relayfee *
                                                          COIN))

        self.log.info(
            "Assert that prioritised free transaction is accepted to mempool")
        assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id)
        assert (tx_id in self.nodes[0].getrawmempool())

        # Test that calling prioritisetransaction is sufficient to trigger
        # getblocktemplate to (eventually) return a new block.
        mock_time = int(time.time())
        self.nodes[0].setmocktime(mock_time)
        template = self.nodes[0].getblocktemplate()
        self.nodes[0].prioritisetransaction(
            txid=tx_id, fee_delta=-int(self.relayfee * COIN))
        self.nodes[0].setmocktime(mock_time + 10)
        new_template = self.nodes[0].getblocktemplate()

        assert (template != new_template)
コード例 #7
0
    def run_test(self):
        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0, 0, 0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-1, "txid must be hexadecimal string", self.nodes[0].prioritisetransaction, txid='foo', fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected", self.nodes[0].prioritisetransaction, txid, 'foo', 0)
        assert_raises_rpc_error(-8, "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.", self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1, "JSON value is not an integer as expected", self.nodes[0].prioritisetransaction, txid=txid, fee_delta='foo')

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert(j in mempool)
                sizes[i] += mempool[j]['size']
            assert(sizes[i] > MAX_BLOCK_BASE_SIZE) # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0], fee_delta=int(3*base_fee*COIN))

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert(txids[0][0] not in mempool)
        assert(txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert(high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction so that it's now low fee).
        self.nodes[0].prioritisetransaction(txid=high_fee_tx, fee_delta=-int(2*base_fee*COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert(high_fee_tx in mempool)

        # Now verify the modified-high feerate transaction isn't mined before
        # the other high fee transactions. Keep mining until our mempool has
        # decreased by all the high fee size that we calculated above.
        while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
            self.nodes[0].generate(1)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that de-prioritised transaction is still in mempool")
        assert(high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert(x not in mempool)

        # Create a free transaction.  Should be rejected.
        utxo_list = self.nodes[0].listunspent()
        assert(len(utxo_list) > 0)
        utxo = utxo_list[0]

        inputs = []
        outputs = {}
        inputs.append({"txid" : utxo["txid"], "vout" : utxo["vout"]})
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"]
        raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
        tx_hex = self.nodes[0].signrawtransactionwithwallet(raw_tx)["hex"]
        tx_id = self.nodes[0].decoderawtransaction(tx_hex)["txid"]

        # This will raise an exception due to min relay fee not being met
        assert_raises_rpc_error(-26, "min relay fee not met", self.nodes[0].sendrawtransaction, tx_hex)
        assert(tx_id not in self.nodes[0].getrawmempool())

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000-byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(txid=tx_id, fee_delta=int(self.relayfee*COIN))

        self.log.info("Assert that prioritised free transaction is accepted to mempool")
        assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id)
        assert(tx_id in self.nodes[0].getrawmempool())

        # Test that calling prioritisetransaction is sufficient to trigger
        # getblocktemplate to (eventually) return a new block.
        mock_time = int(time.time())
        self.nodes[0].setmocktime(mock_time)
        template = self.nodes[0].getblocktemplate()
        self.nodes[0].prioritisetransaction(txid=tx_id, fee_delta=-int(self.relayfee*COIN))
        self.nodes[0].setmocktime(mock_time+10)
        new_template = self.nodes[0].getblocktemplate()

        assert(template != new_template)
コード例 #8
0
    def run_test(self):
        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0, 0, 0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-1, "txid must be hexadecimal string", self.nodes[0].prioritisetransaction, txid='foo', fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected", self.nodes[0].prioritisetransaction, txid, 'foo', 0)
        assert_raises_rpc_error(-8, "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.", self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1, "JSON value is not an integer as expected", self.nodes[0].prioritisetransaction, txid=txid, fee_delta='foo')

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert j in mempool
                sizes[i] += mempool[j]['vsize']
            assert sizes[i] > MAX_BLOCK_BASE_SIZE  # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0], fee_delta=int(3*base_fee*COIN))

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert txids[0][0] not in mempool
        assert txids[0][1] in mempool

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x
コード例 #9
0
    def run_test(self):
        self.wallet = MiniWallet(self.nodes[0])
        self.wallet.rescan_utxos()

        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '', 0, 0,
                                0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-8,
                                "txid must be of length 64 (not 3, for 'foo')",
                                self.nodes[0].prioritisetransaction,
                                txid='foo',
                                fee_delta=0)
        assert_raises_rpc_error(
            -8,
            "txid must be hexadecimal string (not 'Zd1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000')",
            self.nodes[0].prioritisetransaction,
            txid=
            'Zd1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000',
            fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected",
                                self.nodes[0].prioritisetransaction, txid,
                                'foo', 0)
        assert_raises_rpc_error(
            -8,
            "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.",
            self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1,
                                "JSON value is not an integer as expected",
                                self.nodes[0].prioritisetransaction,
                                txid=txid,
                                fee_delta='foo')

        self.test_diamond()

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = self.wallet.send_self_transfer_multi(
            from_node=self.nodes[0], num_outputs=utxo_count)['new_utxos']
        self.generate(self.wallet, 1)
        assert_equal(len(self.nodes[0].getrawmempool()), 0)

        base_fee = self.relayfee * 100  # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(
                self.wallet, self.nodes[0], (i + 1) * base_fee,
                end_range - start_range, self.txouts,
                utxos[start_range:end_range])

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_WEIGHT // 4 -- otherwise the test needs to be revised to
        # create more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert j in mempool
                sizes[i] += mempool[j]['vsize']
            assert sizes[i] > MAX_BLOCK_WEIGHT // 4  # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0],
                                            fee_delta=int(3 * base_fee * COIN))

        self.generate(self.nodes[0], 1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert txids[0][0] not in mempool
        assert txids[0][1] in mempool

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert high_fee_tx is not None

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction so that it's now low fee).
        self.nodes[0].prioritisetransaction(
            txid=high_fee_tx, fee_delta=-int(2 * base_fee * COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert high_fee_tx in mempool

        # Now verify the modified-high feerate transaction isn't mined before
        # the other high fee transactions. Keep mining until our mempool has
        # decreased by all the high fee size that we calculated above.
        while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
            self.generate(self.nodes[0], 1, sync_fun=self.no_op)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        self.log.info(
            "Assert that de-prioritised transaction is still in mempool")
        assert high_fee_tx in mempool
        for x in txids[2]:
            if (x != high_fee_tx):
                assert x not in mempool

        # Create a free transaction.  Should be rejected.
        tx_res = self.wallet.create_self_transfer(fee_rate=0)
        tx_hex = tx_res['hex']
        tx_id = tx_res['txid']

        # This will raise an exception due to min relay fee not being met
        assert_raises_rpc_error(-26, "min relay fee not met",
                                self.nodes[0].sendrawtransaction, tx_hex)
        assert tx_id not in self.nodes[0].getrawmempool()

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000-byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(txid=tx_id,
                                            fee_delta=int(self.relayfee *
                                                          COIN))

        self.log.info(
            "Assert that prioritised free transaction is accepted to mempool")
        assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id)
        assert tx_id in self.nodes[0].getrawmempool()

        # Test that calling prioritisetransaction is sufficient to trigger
        # getblocktemplate to (eventually) return a new block.
        mock_time = int(time.time())
        self.nodes[0].setmocktime(mock_time)
        template = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        self.nodes[0].prioritisetransaction(
            txid=tx_id, fee_delta=-int(self.relayfee * COIN))
        self.nodes[0].setmocktime(mock_time + 10)
        new_template = self.nodes[0].getblocktemplate({'rules': ['segwit']})

        assert template != new_template