def det_label_init(): # Load the vocabulary vocab_file = 'vocabs/vocab_train.pkl' vocab = utils.load_variables(vocab_file) # Set up Caffe caffe.set_mode_gpu() caffe.set_device(0) # Load the model mean = np.array([[[103.939, 116.779, 123.68]]]); base_image_size = 565; prototxt_deploy = 'visual_concepts/code/output/vgg/mil_finetune.prototxt.deploy' model_file = 'visual_concepts/code/output/vgg/snapshot_iter_240000.caffemodel' model = test_model.load_model(prototxt_deploy, model_file, base_image_size, mean, vocab) # define functional words functional_words = ['a', 'on', 'of', 'the', 'in', 'with', 'and', 'is', 'to', 'an', 'two', 'at', 'next', 'are'] is_functional = np.array([x not in functional_words for x in vocab['words']]) # load the score precision mapping file eval_file = visual_concepts/code/code/output/vgg/snapshot_iter_240000.caffemodel_output/coco_valid1_eval.pkl' pt = utils.load_variables(eval_file); # Set threshold_metric_name and output_metric_name threshold_metric_name = 'prec'; output_metric_name = 'prec'; return model,functional_words,threshold_metric_name,output_metric_name,vocab,is_functional,pt
def main(): (x_train, y_train) = ut.load_dataset() print("Dataset loaded...") model_def = tm.load_model('trained_model') y_predicted = model_def.predict(x_train) np.savetxt("gt", y_train) np.savetxt("pred", y_predicted) path_input_image = '../../Dataset/GehlerShi_input/' path_output = '../../Dataset/Prediction/' file_names = [] for i in range(1, 569): file_names.append('00' + ut.zero_string(4-ut.nr_digits(i)) + str(i)) for index,file_name in enumerate(file_names): image_blob = Image.open(os.path.join(path_input_image, file_name+".png")) gt_lumminance = y_train[index] pred_lumminance = y_predicted[index] White_bal_groundtruth = to_pil(white_balance(image_blob,gt_lumminance)) White_bal_prediction = to_pil(white_balance(image_blob,pred_lumminance)) White_bal_groundtruth.save(os.path.join(path_output, file_name+"_gt.png")) White_bal_prediction.save(os.path.join(path_output, file_name+"_pred.png"))
from test_model import (load_model, get_prediction) from http.server import HTTPServer, BaseHTTPRequestHandler import ssl import json import traceback import os # server config PORT = 3000 SSL_KEY = "ssl/private.key" SSL_CERT = "ssl/ca_bundle.crt" config, tokenizer, model = load_model( "chess/bert-base-multilingual-uncased_English_translated_baseline_32/") class ModelRequestHandler(BaseHTTPRequestHandler): def __init__(self, *args): super().__init__(*args) def do_GET(self): try: if self.path == "/": self.path = "/index.html" if self.path == "they_actually_said_that.txt": with open(self.path, "r") as document: self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers()
def main(): start_time = time.time() # Get dataset categories categories = load_categories() # Load RGB model model_id = 1 model = load_model(model_id, categories).cuda() # Load the video frame transform transform = load_transform() mode_folder = args.video_file.split("/")[-1] if not mode_folder: raise Exception("DONT GIMME THAT LAST SLASH IN THE VIDEO_FILE plz.") feature_dir = "/media/lili/fce9875a-a5c8-4c35-8f60-db60be29ea5d/extracted_features_moments_raw/%s" % mode_folder if not os.path.exists(feature_dir): os.makedirs(feature_dir) for subdir in sorted(os.listdir(args.video_file)): print("subdir :", subdir) video_dir = os.path.join(args.video_file, subdir) logits_list = [] features_list = [] video_name_list = [] for video_name in sorted(os.listdir(video_dir)): single_video_path = os.path.join(video_dir, video_name) frames = extract_frames(single_video_path, args.num_segments) # Prepare input tensor data = torch.stack([transform(frame) for frame in frames]) input_var = Variable(data.view(-1, 3, data.size(2), data.size(3)), volatile=True).cuda() # Extract features before the fully connected layers res50_before_fc = FeatureExtractor(model) # Make video prediction logits = model(input_var) features = res50_before_fc(input_var) logits_np = logits.data.cpu().numpy() logits_list.append(logits_np) # save features before the fully connected layer features_list.append(np.squeeze(features.data.cpu().numpy())) stored_video_name = os.path.join(subdir, video_name) video_name_list.append(stored_video_name) np.save(os.path.join(feature_dir, "{}_logits.npy".format(subdir)), np.asarray(logits_list)) np.save(os.path.join(feature_dir, "{}_names.npy".format(subdir)), np.asarray(video_name_list)) np.save(os.path.join(feature_dir, "{}_features.npy".format(subdir)), np.asarray(features_list))
parser = argparse.ArgumentParser(description="test TRN on a single video") group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--video_file', type=str, default=None) group.add_argument('--frame_folder', type=str, default=None) parser.add_argument('--rendered_output', type=str, default=None) parser.add_argument('--num_segments', type=int, default=8) group.add_argument('--videos_dir', type=str, default=None) args = parser.parse_args() # Get dataset categories categories = load_categories() # Load RGB model model_id = 1 model = load_model(model_id, categories) # Load the video frame transform transform = load_transform() all_scenes = list( map( os.path.abspath, map(lambda d: os.path.join(args.videos_dir, d), os.listdir(args.videos_dir)))) all_scenes = list(filter(lambda f: f.endswith('mp4'), all_scenes)) out_dir = os.path.abspath(os.path.join(args.videos_dir, '../scores_final')) os.makedirs(out_dir, exist_ok=True) # Obtain video frames for scene in all_scenes:
for seed in region: # Each seed is a function of its region, ie region 1 seed 1 is new_seed 1, region 3 seed 1 is new_seed 33 # The actual function is (seed # + (16 * (region # - 1)). Index is already equal to region # - 1, since "regions" list starts at index 0 # Add value to bracket_64 bracket_64.append(seed + (16 * index)) return bracket_64 if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) year = 2018 model = training.Lin_Relu(20) model = test_model.load_model(".\\Models\\500_epochs", model) # model = test_model.load_model(".\\Models\\5_epochs", model) kp_df = kenpom_df(".\\Training_Data\\KenPom_Complete.csv", year) # Can't simply build 64 team bracket, need four sections of 16 team brackets that play against each other region1 = generate_tournament(16) regions = [region1] * 4 bracket_64 = create_64_bracket(regions) # tourney_dict functions as match data, while maintaining easily accessible team information based on region and seed tourney_dict = match_teams_seeds(".\\Training_Data\\Match_Data.csv", year) total_score = 0
def loadModel(deployProtoPath, modelPath, vocab, base_image_size, infType): mean = np.array([[[ 103.939, 116.779, 123.68]]]); model = tm.load_model(deployProtoPath, modelPath, base_image_size, mean, vocab); model['inf_type'] = infType; return model
def loadModel(deployProtoPath, modelPath, vocab, base_image_size, infType): mean = np.array([[[103.939, 116.779, 123.68]]]) model = tm.load_model(deployProtoPath, modelPath, base_image_size, mean, vocab) model['inf_type'] = infType return model
# Load the vocabulary vocab_file = 'vocabs/vocab_train.pkl' vocab = utils.load_variables(vocab_file) # Set up Caffe caffe.set_mode_gpu() caffe.set_device(0) # Load the model mean = np.array([[[ 103.939, 116.779, 123.68]]]); base_image_size = 565; prototxt_deploy = 'output/vgg/mil_finetune.prototxt.deploy' model_file = 'output/vgg/snapshot_iter_240000.caffemodel' model = test_model.load_model(prototxt_deploy, model_file, base_image_size, mean, vocab) # In[3]: # define functional words functional_words = ['a', 'on', 'of', 'the', 'in', 'with', 'and', 'is', 'to', 'an', 'two', 'at', 'next', 'are'] is_functional = np.array([x not in functional_words for x in vocab['words']]) # load the score precision mapping file eval_file = 'output/vgg/snapshot_iter_240000.caffemodel_output/coco_valid1_eval.pkl' pt = utils.load_variables(eval_file); # Set threshold_metric_name and output_metric_name threshold_metric_name = 'prec'; output_metric_name = 'prec';