コード例 #1
0
ファイル: util_test.py プロジェクト: tfboyd/benchmark_harness
  def test_aggregate_results(self):
    """Tests aggregating multiple results file from the same test."""
    test_id_0 = 'made.up.test_id'
    results_list = []
    extra_results = []
    extra_results.append(self._mock_extra_result(250, 'total_time', 'ms'))
    extra_results.append(self._mock_extra_result(250, 'total_time', 'ms'))
    extra_results_2 = []
    extra_results_2.append(self._mock_extra_result(125, 'total_time', 'ms'))
    extra_results_2.append(self._mock_extra_result(125, 'total_time', 'ms'))
    results_list.append(self._mock_result(test_id_0,
                                          10.5,
                                          extra_results=extra_results))
    results_list.append(self._mock_result(test_id_0,
                                          20,
                                          extra_results=extra_results))
    results_list.append(self._mock_result(test_id_0,
                                          .44444,
                                          extra_results=extra_results_2))

    agg_result = util.report_aggregate_results(results_list)
    self.assertEqual(agg_result['test_id'], test_id_0)
    self.assertEqual(agg_result['mean'], 10.314813333333333)
    self.assertEqual(agg_result['max'], 20)
    self.assertEqual(agg_result['min'], 0.44444)
    self.assertEqual(agg_result['std'], 7.9845977692276744)
    self.assertEqual(agg_result['samples'], 3)
    self.assertIn('config', agg_result)
    # Check for extra results
    self.assertEqual(agg_result['extra_results'][0]['mean'], 208.33333333333334)
コード例 #2
0
ファイル: util_test.py プロジェクト: tfboyd/benchmark_harness
  def test_aggregate_results_only_1(self):
    """Tests aggregating 1 result."""
    test_id_0 = 'made.up.test_id'
    results_list = []
    results_list.append(self._mock_result(test_id_0, 10.5))

    agg_result = util.report_aggregate_results(results_list)
    self.assertEqual(agg_result['test_id'], test_id_0)
    self.assertEqual(agg_result['mean'], 10.5)
    self.assertEqual(agg_result['max'], 10.5)
    self.assertEqual(agg_result['min'], 10.5)
    self.assertEqual(agg_result['std'], 0)
    self.assertEqual(agg_result['samples'], 1)
    self.assertIn('config', agg_result)
コード例 #3
0
def process_folder(folder_path, report_config=None):
  """Process one or more results of a single test found in the folder path.

  Args:
    folder_path: Folder to recursively search for results files, e.g.
      worker_0_stdout.log
    report_config: dict based config information normally passed down from a
      higher level harness with high level system information.
  """
  report_config = {} if report_config is None else report_config
  results = _collect_results(folder_path)
  agg_result = util.report_aggregate_results(results)

  util.upload_results(
      report_config, agg_result, framework='pytorch', test_harness='pytorch')
コード例 #4
0
ファイル: util_test.py プロジェクト: tfboyd/benchmark_harness
  def test_aggregate_results_no_imgs_sec(self):
    """Tests aggregating results that are empty."""
    test_id_0 = 'made.up.test_id'
    results_list = []
    results_list.append(self._mock_result(test_id_0, None))
    results_list.append(self._mock_result(test_id_0, None))
    results_list.append(self._mock_result(test_id_0, None))

    agg_result = util.report_aggregate_results(results_list)
    self.assertEqual(agg_result['test_id'], test_id_0)
    self.assertEqual(agg_result['mean'], 0)
    self.assertEqual(agg_result['max'], 0)
    self.assertEqual(agg_result['min'], 0)
    self.assertEqual(agg_result['std'], 0)
    self.assertEqual(agg_result['samples'], 0)
    self.assertIn('config', agg_result)
コード例 #5
0
ファイル: reporting.py プロジェクト: tfboyd/benchmark_harness
def process_folder(folder_path, report_config=None):
  """Process and print aggregated results found in folder.

  Args:
    folder_path: Folder to recursively search for results files, e.g.
      worker_0_stdout.log
    report_config: dict config information normally passed down from a
      higher level harness with high level system information.
  """
  report_config = {} if report_config is None else report_config
  results = _collect_results(folder_path)
  agg_result = util.report_aggregate_results(results)

  util.upload_results(
      report_config,
      agg_result,
      framework='tensorflow',
      test_harness='tf_cnn_benchmark')