def test_3d_motion(gaussian, prefilter): # Generate synthetic data rnd = np.random.RandomState(0) image0 = rnd.normal(size=(50, 55, 60)) gt_flow, image1 = _sin_flow_gen(image0, npics=3) # Estimate the flow flow = optical_flow_ilk(image0, image1, radius=5, gaussian=gaussian, prefilter=prefilter) # Assert that the average absolute error is less then half a pixel assert abs(flow - gt_flow).mean() < 0.5
def test_optical_flow_dtype(): # Generate synthetic data rnd = np.random.RandomState(0) image0 = rnd.normal(size=(256, 256)) gt_flow, image1 = _sin_flow_gen(image0) # Estimate the flow at double precision flow_f64 = optical_flow_ilk(image0, image1, dtype='float64') assert flow_f64.dtype == 'float64' # Estimate the flow at single precision flow_f32 = optical_flow_ilk(image0, image1, dtype='float32') assert flow_f32.dtype == 'float32' # Assert that floating point precision does not affect the quality # of the estimated flow assert abs(flow_f64 - flow_f32).mean() < 1e-3
def test_2d_motion(dtype, gaussian, prefilter): # Generate synthetic data rnd = np.random.RandomState(0) image0 = rnd.normal(size=(256, 256)) gt_flow, image1 = _sin_flow_gen(image0) image1 = image1.astype(dtype, copy=False) float_dtype = _supported_float_type(dtype) # Estimate the flow flow = optical_flow_ilk(image0, image1, gaussian=gaussian, prefilter=prefilter, dtype=float_dtype) assert flow.dtype == _supported_float_type(dtype) # Assert that the average absolute error is less then half a pixel assert abs(flow - gt_flow).mean() < 0.5 if dtype != float_dtype: with pytest.raises(ValueError): optical_flow_ilk(image0, image1, gaussian=gaussian, prefilter=prefilter, dtype=dtype)