コード例 #1
0
def _test_tril_fw_bw(test_case, device, shape, type_name, diagonal, fill_value):
    flow.clear_default_session()
    func_config = flow.FunctionConfig()
    func_config.default_data_type(flow.float)
    if type_name == "float16":
        flow_type = flow.float
        np_type = np.float32
    else:
        flow_type = type_name_to_flow_type[type_name]
        np_type = type_name_to_np_type[type_name]

    @flow.global_function(type="train", function_config=func_config)
    def test_tril_fw_bw_job(x: oft.Numpy.Placeholder(shape, dtype=flow_type)):
        with flow.scope.placement(device, "0:0"):
            x_var = flow.get_variable(
                name="xv",
                shape=(1,),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            x += flow.cast(x_var, dtype=flow_type)
            if type_name == "float16":
                out = flow.cast(
                    flow.math.tril(flow.cast(x, flow.float16), diagonal), flow.float
                )
            else:
                out = flow.math.tril(x, diagonal)
            flow.optimizer.SGD(
                flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
            ).minimize(out)
            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(out, test_global_storage.Setter("out"))
            flow.watch_diff(out, test_global_storage.Setter("out_diff"))
            return out

    x = np.random.randint(low=0, high=100, size=shape)
    test_tril_fw_bw_job(x.astype(np_type)).get()
    np_out = np.where(
        np.tril(np.ones(shape), diagonal),
        test_global_storage.Get("x"),
        np.full(shape, fill_value).astype(np_type),
    )
    np_x_diff = np.tril(test_global_storage.Get("out_diff"), diagonal)
    if type_name == "float16":
        tolerance = 0.001
    else:
        tolerance = 1e-05
    test_case.assertTrue(
        np.allclose(
            np_out, test_global_storage.Get("out"), rtol=tolerance, atol=tolerance
        )
    )
    test_case.assertTrue(
        np.allclose(
            np_x_diff, test_global_storage.Get("x_diff"), rtol=tolerance, atol=tolerance
        )
    )
コード例 #2
0
def _test_element_wise_mul_fw_bw(test_case, device, shape, type_name):
    flow.clear_default_session()
    func_config = flow.FunctionConfig()
    func_config.default_data_type(flow.float)
    np_type = type_name_to_np_type[type_name]
    flow_type = type_name_to_flow_type[type_name]

    @flow.global_function(type="train", function_config=func_config)
    def test_element_wise_mul_job(
            x: oft.Numpy.Placeholder(shape, dtype=flow.float),
            y: oft.Numpy.Placeholder(shape, dtype=flow.float),
    ):
        with flow.scope.placement(device, "0:0"):
            x += flow.get_variable(
                name="vx",
                shape=(1, ),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            y += flow.get_variable(
                name="vy",
                shape=(1, ),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            x = flow.cast(x, dtype=flow_type)
            y = flow.cast(y, dtype=flow_type)
            out = flow.math.multiply(x, y)
            out = flow.cast(out, dtype=flow.float)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [0.0001]),
                               momentum=0).minimize(out)
            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(y, test_global_storage.Setter("y"))
            flow.watch_diff(y, test_global_storage.Setter("y_diff"))
            flow.watch(out, test_global_storage.Setter("out"))
            flow.watch_diff(out, test_global_storage.Setter("out_diff"))
            return out

    x = np.random.randint(low=0, high=10, size=shape).astype(np.float32)
    y = np.random.randint(low=0, high=10, size=shape).astype(np.float32)
    test_element_wise_mul_job(x, y).get()
    test_case.assertTrue(
        np.allclose(
            test_global_storage.Get("x") * test_global_storage.Get("y"),
            test_global_storage.Get("out"),
        ))
    test_case.assertTrue(
        np.allclose(
            test_global_storage.Get("out_diff") * test_global_storage.Get("x"),
            test_global_storage.Get("y_diff"),
        ))
    test_case.assertTrue(
        np.allclose(
            test_global_storage.Get("out_diff") * test_global_storage.Get("y"),
            test_global_storage.Get("x_diff"),
        ))
コード例 #3
0
def _test_masked_fill_fw_bw(test_case,
                            device,
                            x_shape,
                            mask_shape,
                            type_name,
                            value=0):
    flow.clear_default_session()
    func_config = flow.FunctionConfig()

    if type_name == "float16":
        flow_type = flow.float
        np_type = np.float32
    else:
        flow_type = type_name_to_flow_type[type_name]
        np_type = type_name_to_np_type[type_name]

    func_config.default_data_type(flow_type)

    @flow.global_function(type="train", function_config=func_config)
    def test_masked_fill_fw_bw_job(
            x: oft.Numpy.Placeholder(x_shape, dtype=flow_type),
            mask: oft.Numpy.Placeholder(mask_shape, dtype=flow_type),
    ):
        with flow.scope.placement(device, "0:0"):
            y = flow.get_variable(
                name="vx",
                shape=(1, ),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            x += flow.cast(y, flow_type)
            mask = flow.cast(mask, dtype=flow.int8)
            if type_name == "float16":
                out = flow.cast(
                    flow.masked_fill(flow.cast(x, flow.float16), mask, value),
                    flow.float,
                )
            else:
                out = flow.masked_fill(x, mask, value)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(out)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(out, test_global_storage.Setter("out"))
            flow.watch_diff(out, test_global_storage.Setter("out_diff"))
            return out

    x = np.random.randint(low=0, high=100, size=x_shape)
    mask = np.random.randint(low=0, high=2, size=mask_shape)

    test_masked_fill_fw_bw_job(x.astype(np_type), mask.astype(np_type)).get()
    out_diff = test_global_storage.Get("out_diff")

    np_out, np_x_diff = _masked_fill_np_fw_bw(x, mask, out_diff, np_type,
                                              value)

    if type_name == "float16":
        tolerance = 1e-3
    else:
        tolerance = 1e-5

    test_case.assertTrue(
        np.allclose(np_out,
                    test_global_storage.Get("out"),
                    rtol=tolerance,
                    atol=tolerance))
    test_case.assertTrue(
        np.allclose(np_x_diff,
                    test_global_storage.Get("x_diff"),
                    rtol=tolerance,
                    atol=tolerance))
コード例 #4
0
def _test_element_wise_mul_fw_bw(test_case, device, shape, type_name):
    flow.clear_default_session()
    func_config = flow.FunctionConfig()
    func_config.default_data_type(flow.float)
    func_config.train.primary_lr(1e-4)
    func_config.train.model_update_conf(dict(naive_conf={}))

    np_type = type_name_to_np_type[type_name]
    flow_type = type_name_to_flow_type[type_name]

    @flow.global_function(func_config)
    def test_element_wise_mul_job(
        x: oft.Numpy.Placeholder(shape, dtype=flow.float),
        y: oft.Numpy.Placeholder(shape, dtype=flow.float),
    ):
        with flow.scope.placement(device, "0:0"):
            x += flow.get_variable(
                name="vx",
                shape=(1,),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            y += flow.get_variable(
                name="vy",
                shape=(1,),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            x = flow.cast(x, dtype=flow_type)
            y = flow.cast(y, dtype=flow_type)
            out = flow.math.multiply(x, y)
            out = flow.cast(out, dtype=flow.float)
            flow.losses.add_loss(out)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(y, test_global_storage.Setter("y"))
            flow.watch_diff(y, test_global_storage.Setter("y_diff"))
            flow.watch(out, test_global_storage.Setter("out"))
            flow.watch_diff(out, test_global_storage.Setter("out_diff"))
            return out

    check_point = flow.train.CheckPoint()
    check_point.init()
    x = np.random.randint(low=0, high=10, size=shape).astype(np.float32)
    y = np.random.randint(low=0, high=10, size=shape).astype(np.float32)
    test_element_wise_mul_job(x, y).get()
    test_case.assertTrue(
        np.allclose(
            test_global_storage.Get("x") * test_global_storage.Get("y"),
            test_global_storage.Get("out"),
        )
    )
    test_case.assertTrue(
        np.allclose(
            test_global_storage.Get("out_diff") * test_global_storage.Get("x"),
            test_global_storage.Get("y_diff"),
        )
    )
    test_case.assertTrue(
        np.allclose(
            test_global_storage.Get("out_diff") * test_global_storage.Get("y"),
            test_global_storage.Get("x_diff"),
        )
    )