# DESCRIPTION of PLAYERS. # weights[0] determines how important size of a piece is # weights[1] determines how important maximizing the difference of my corners and opponent corners # weights[2] decides how many of the best placements we choose to look ahead with # weights[3] decides how important the score of the second move is # weights[4] decides how important the score of the first move is # <EDIT START NUM_ITERATION = 20 SAVE_FILE_NAME = "min_v_greedy_%d.json" % NUM_ITERATION DEBUG = False # EDIT END/> ### RUN & SAVE ### record_dicts = [] for i in range(NUM_ITERATION): print("################ Iteration %d ################" % (i+1) ) # <EDIT START first = Greedy("A", "Minimax(2,1)A", Minimax_Player, [2, 1, 5, 1, 1]) second = Player("B", "RandomB", Random_Player) third = Greedy("C", "Greedy(2,1)C", Greedy_Player, [2, 1, 5, 1, 1]) fourth = Player("D", "RandomD", Random_Player) # EDIT END/> record_dicts += [T.run_test_all_general(first, second, third, fourth,DEBUG)] T.save(record_dicts, SAVE_FILE_NAME)
import sys import os cwd = os.getcwd() sys.path.insert(0, cwd + "/..") import test_utils as T # not random any more. all_random = "all_random.json" greedy_v_greedy_5 = "greedy[2,1]_v_greedy[2,1]_5.json" greedy_v_greedy_15 = "greedy[2,1]_v_greedy[2,1]_15.json" min_v_greedy_20 = "min[2,1]_v_greedy[2,1]_20.json" FILENAME1 = greedy_v_greedy_5 FILENAME2 = greedy_v_greedy_15 loaded1 = T.load(FILENAME1) loaded2 = T.load(FILENAME2) T.save(loaded1 + loaded2, "greedy[2,1]_v_greedy[2,1]_20.json")
import sys\nsys.path.insert(0, '/Users/minyoungjeong/Desktop/4511_project/Machine-Learning-Blokus-master') import test_utils as T result = T.run_test_all_random(True) T.save([result], "test.json")
# Run four random players. NUM_ITERATION = 2 import sys sys.path.insert( 0, '/Users/minyoungjeong/Desktop/4511_project/Machine-Learning-Blokus-master') import test_utils as T record_dicts = [] for i in range(NUM_ITERATION): record_dicts += [T.run_test_all_random()] T.save(record_dicts, "all_random.json")