コード例 #1
0
def abstract_test_multi_dataset_raw_only_even(in_memory):
    raw_datasets = [
        conftest.dataset_1_raw_images(),
        conftest.dataset_2_raw_images(),
        conftest.dataset_3_raw_images()
    ]
    dataset = TrainingDataset([
        conftest.dataset_1_raw_dir.name, conftest.dataset_2_raw_dir.name,
        conftest.dataset_3_raw_dir.name
    ],
                              batch_size=10,
                              val_ratio=0,
                              add_normalization_transform=False,
                              keep_in_memory=in_memory)
    IndexEvenGenerator.counter = 0
    TrainingDataset._dataset_index_proportional = IndexEvenGenerator.index
    # indices[0] because we only have one dataset
    assert len(dataset) == 9
    assert len([idx for sub in dataset.train_indices for idx in sub]) == 9
    assert len([idx for sub in dataset.val_indices for idx in sub]) == 0
    # datasets     0  1  2  0  1  2  0  1  2  0
    raw_indices = [0, 0, 0, 1, 1, 1, 2, 0, 2, 3]
    # We get back a batch of size 4 with all images in order
    sample = next(iter(dataset))
    for i, raw in enumerate(sample['raw']):
        mask = ~sample['mask'][i].astype(np.bool)
        assert not mask.all()
        gt = sample['gt'][i]
        dataset_index = i % 3
        raw_dataset = raw_datasets[dataset_index]
        raw_index = raw_indices[i]
        assert np.array_equal(raw[mask], raw_dataset[raw_index][mask])
        assert not np.array_equal(raw, raw_dataset[raw_index])
        assert np.array_equal(gt, raw_dataset[raw_index])
コード例 #2
0
def abstract_test_multi_dataset_raw_only_with_val_even(in_memory):
    # Dataset 1 has 4 raw images and 2 gt images
    raw_datasets = [
        conftest.dataset_1_raw_images(),
        conftest.dataset_2_raw_images(),
        conftest.dataset_3_raw_images()
    ]
    dataset = TrainingDataset([
        conftest.dataset_1_raw_dir.name, conftest.dataset_2_raw_dir.name,
        conftest.dataset_3_raw_dir.name
    ],
                              batch_size=6,
                              val_ratio=0.5,
                              add_normalization_transform=False,
                              keep_in_memory=in_memory)
    IndexEvenGenerator.counter = 0
    TrainingDataset._dataset_index_proportional = IndexEvenGenerator.index
    # Order of indices because we cut off a part for validation
    # dataset      0  1  2  0  1  2
    raw_indices = [2, 1, 1, 3, 1, 2]
    # indices[0] because we only have one dataset
    assert len(dataset) == 9
    assert len([idx for sub in dataset.train_indices for idx in sub]) == 5
    assert len([idx for sub in dataset.val_indices for idx in sub]) == 4
    # We get back a batch of size 4 with all images in order
    sample = next(iter(dataset))
    for i, raw in enumerate(sample['raw']):
        mask = ~sample['mask'][i].astype(np.bool)
        assert not mask.all()
        gt = sample['gt'][i]
        # We are looping through the datasets evenly
        dataset_index = i % 3
        raw_dataset = raw_datasets[dataset_index]
        gt_dataset = gt_datasets[dataset_index]
        raw_index = raw_indices[i]
        assert np.array_equal(raw[mask], raw_dataset[raw_index][mask])
        assert not np.array_equal(raw, raw_dataset[raw_index])
        assert np.array_equal(gt, raw_dataset[raw_index])
    # datasets         0  1  2  0
    val_raw_indices = [0, 0, 0, 1]
    for i, val in enumerate(dataset.validation_samples()):
        mask = ~val['mask'][i].astype(np.bool)
        assert not mask.all()
        gt = val['gt'][i]
        # We are looping through the datasets evenly
        dataset_index = i % 3
        raw_dataset = raw_datasets[dataset_index]
        raw_index = val_raw_indices[i]
        raw = raw_dataset[raw_index]
        assert np.array_equal(raw[mask], raw_dataset[raw_index][mask])
        assert not np.array_equal(raw, raw_dataset[raw_index])
        assert np.array_equal(gt, gt_dataset[gt_index])
コード例 #3
0
def abstract_test_multi_dataset_raw_gt(in_memory):
    # Dataset 1 has 4 raw images and 2 gt images
    raw_datasets = [
        conftest.dataset_1_raw_images(),
        conftest.dataset_2_raw_images(),
        conftest.dataset_3_raw_images()
    ]
    gt_datasets = [
        conftest.dataset_1_gt_images(),
        conftest.dataset_2_gt_images(),
        conftest.dataset_3_gt_images()
    ]
    dataset = TrainingDataset([
        conftest.dataset_1_raw_dir.name, conftest.dataset_2_raw_dir.name,
        conftest.dataset_3_raw_dir.name
    ], [
        conftest.dataset_1_gt_dir.name, conftest.dataset_2_gt_dir.name,
        conftest.dataset_3_gt_dir.name
    ],
                              batch_size=9,
                              val_ratio=0,
                              add_normalization_transform=False,
                              keep_in_memory=in_memory)
    IndexProportionalGenerator.counter = 0
    TrainingDataset._dataset_index_proportional =\
                IndexProportionalGenerator.index_without_val
    # indices[0] because we only have one dataset
    assert len(dataset) == 9
    assert len([idx for sub in dataset.train_indices for idx in sub]) == 9
    assert len([idx for sub in dataset.val_indices for idx in sub]) == 0
    dataset_indices = [0, 0, 0, 0, 1, 1, 2, 2, 2]
    raw_indices = [0, 1, 2, 3, 0, 1, 0, 1, 2]
    gt_indices = [0, 0, 1, 1, 0, 1, 0, 0, 0]
    # We get back a batch of size 4 with all images in order
    sample = next(iter(dataset))
    for i, raw in enumerate(sample['raw']):
        mask = sample['mask'][i].astype(np.bool)
        assert mask.all()
        gt = sample['gt'][i]
        dataset_index = dataset_indices[i]
        raw_index = raw_indices[i]
        gt_index = gt_indices[i]
        # Second half are training indices in TrainingDataset
        raw_dataset = raw_datasets[dataset_index]
        gt_dataset = gt_datasets[dataset_index]
        assert np.array_equal(raw, raw_dataset[raw_index])
        assert np.array_equal(gt, gt_dataset[gt_index])
コード例 #4
0
def abstract_test_multi_dataset_raw_only_with_val(in_memory):
    # Dataset 1 has 4 raw images and 2 gt images
    dataset_1_raw = conftest.dataset_1_raw_images()
    dataset_2_raw = conftest.dataset_2_raw_images()
    dataset_3_raw = conftest.dataset_3_raw_images()
    datasets = [dataset_1_raw, dataset_2_raw, dataset_3_raw]
    dataset = TrainingDataset([
        conftest.dataset_1_raw_dir.name, conftest.dataset_2_raw_dir.name,
        conftest.dataset_3_raw_dir.name
    ],
                              batch_size=5,
                              val_ratio=0.5,
                              add_normalization_transform=False,
                              keep_in_memory=in_memory)
    IndexProportionalGenerator.counter = 0
    TrainingDataset._dataset_index_proportional =\
                IndexProportionalGenerator.index_with_val
    assert len([idx for sub in dataset.train_indices for idx in sub]) == 5
    assert len([idx for sub in dataset.val_indices for idx in sub]) == 4
    dataset_indices = [0, 0, 1, 2, 2]
    raw_train_indices = [2, 3, 1, 1, 2]
    # We get back a batch of size 4 with all images in order
    sample = next(iter(dataset))
    for i, raw in enumerate(sample['raw']):
        mask = ~sample['mask'][i].astype(np.bool)
        # Since N2V training
        assert not mask.all()
        gt = sample['gt'][i]
        dataset_index = dataset_indices[i]
        raw_index = raw_train_indices[i]
        test_dataset = datasets[dataset_index]
        assert np.array_equal(raw[mask], test_dataset[raw_index][mask])
        assert not np.array_equal(raw, test_dataset[raw_index])
        assert np.array_equal(gt, test_dataset[raw_index])
    raw_val_indices = [0, 1, 0, 0]
    for val in dataset.validation_samples():
        for i, raw in enumerate(val['raw']):
            dataset_index = dataset_indices[i]
            raw_index = raw_val_indices[i]
            val_raw = raw.squeeze()
            val_gt = val['gt'][i].squeeze()
            mask = ~val['mask'][i].squeeze().astype(np.bool)
            test_dataset = datasets[dataset_index]
            assert np.array_equal(val_raw[mask], test_dataset[raw_index][mask])
            assert np.array_equal(val_gt, test_dataset[raw_index])
コード例 #5
0
def test_multi_dataset_gt_images():
    dataset = PredictionDataset([
        conftest.dataset_1_raw_dir.name, conftest.dataset_2_raw_dir.name,
        conftest.dataset_3_raw_dir.name
    ], [
        conftest.dataset_1_gt_dir.name, conftest.dataset_2_gt_dir.name,
        conftest.dataset_3_gt_dir.name
    ])
    raw = conftest.dataset_1_raw_images()
    raw2 = conftest.dataset_2_raw_images()
    raw3 = conftest.dataset_3_raw_images()
    gt = conftest.dataset_1_gt_images()
    gt2 = conftest.dataset_2_gt_images()
    gt3 = conftest.dataset_3_gt_images()
    factors = [
        int(len(raw) / len(gt)),
        int(len(raw2) / len(gt2)),
        int(len(raw3) / len(gt3))
    ]
    raw.extend(raw2)
    raw.extend(raw3)
    raw = np.array(raw)
    for i, sample in enumerate(dataset):
        if i < 4:
            factor = factors[0]
            current_gt = gt
            gt_idx = i
        elif i < 6:
            factor = factors[1]
            current_gt = gt2
            # because first dataset has 4 entries
            gt_idx = i - 4
        else:
            factor = factors[2]
            current_gt = gt3
            # because second dataset has an additional 2 entries
            gt_idx = i - 6
        raw_ = sample['raw']
        gt_ = sample['gt']
        assert np.array_equal(raw[i], raw_)
        assert np.array_equal(current_gt[int(gt_idx / factor)], gt_)
コード例 #6
0
def abstract_test_multi_dataset_raw_only(in_memory):
    dataset_1_raw = conftest.dataset_1_raw_images()
    dataset_2_raw = conftest.dataset_2_raw_images()
    dataset_3_raw = conftest.dataset_3_raw_images()
    datasets = [dataset_1_raw, dataset_2_raw, dataset_3_raw]
    dataset = TrainingDataset([
        conftest.dataset_1_raw_dir.name, conftest.dataset_2_raw_dir.name,
        conftest.dataset_3_raw_dir.name
    ],
                              batch_size=9,
                              val_ratio=0,
                              add_normalization_transform=False,
                              keep_in_memory=in_memory)
    TrainingDataset._dataset_index_proportional =\
                IndexProportionalGenerator.index_without_val
    assert len(dataset) == 9
    # indices[0] because we only have one dataset
    assert len(dataset.train_indices[0]) == 4
    assert len(dataset.train_indices[1]) == 2
    assert len(dataset.train_indices[2]) == 3
    assert len([idx for sub in dataset.val_indices for idx in sub]) == 0
    dataset_indices = [0, 0, 0, 0, 1, 1, 2, 2, 2]
    raw_indices = [0, 1, 2, 3, 0, 1, 0, 1, 2]
    # We get back a batch of size 4 with all images in order
    sample = next(iter(dataset))
    for i, raw in enumerate(sample['raw']):
        mask = ~sample['mask'][i].astype(np.bool)
        assert not mask.all()
        gt = sample['gt'][i]
        dataset_index = dataset_indices[i]
        raw_index = raw_indices[i]
        # Second half are training indices in TrainingDataset
        test_dataset = datasets[dataset_index]
        assert np.array_equal(raw[mask], test_dataset[raw_index][mask])
        assert not np.array_equal(raw, test_dataset[raw_index])
        assert np.array_equal(gt, test_dataset[raw_index])