def test_dmlrunner_same_train_job_with_split_1( \ runner, mnist_filepath): split_job = make_split_job(mnist_filepath) split_job.hyperparams['split'] = 1 job_results = runner.run_job(split_job) session_filepath = job_results.results['session_filepath'] datapoint_count = job_results.results['datapoint_count'] initialize_job = make_initialize_job() initial_weights = runner.run_job(initialize_job).results['weights'] train_job = make_train_job( initial_weights, session_filepath, datapoint_count ) result = runner.run_job(train_job) assert result.status == 'successful' results = result.results new_weights = results['weights'] omega = results['omega'] train_stats = results['train_stats'] assert result.job.job_type is JobTypes.JOB_TRAIN.name assert type(new_weights) == list assert type(new_weights[0]) == np.ndarray assert type(omega) == int or type(omega) == float assert type(train_stats) == dict
def split_dmlresult_obj(config_manager, mnist_filepath): model_json = make_model_json() runner = DMLRunner(config_manager) split_job = make_split_job( model_json, mnist_filepath, ) split_job.hyperparams['split'] = 0.75 job_results = runner.run_job(split_job) return job_results
def split_dmlresult_obj(config_manager, mnist_uuid, dataset_manager): model_json = make_model_json() runner = DMLRunner(config_manager) mnist_filepath = dataset_manager.get_mappings()[mnist_uuid] split_job = make_split_job( model_json, mnist_filepath, ) split_job.hyperparams['split'] = 0.75 job_results = runner.run_job(split_job) print(job_results) return job_results
def test_dmlrunner_transform_and_split( \ runner, small_filepath): split_job = make_split_job(small_filepath) split_job.hyperparams['split'] = 0.75 job_results = runner.run_job(split_job) session_filepath = job_results.results['session_filepath'] assert os.path.isdir(session_filepath), \ "Session folder does not exist!" train_filepath = os.path.join(session_filepath, 'train.csv') test_filepath = os.path.join(session_filepath, 'test.csv') assert os.path.isfile(train_filepath) and os.path.isfile(test_filepath), \ "Training and test set not created!" train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) assert len(train) == 6 and len(test) == 2, \ "Train test split was not performed correctly."
def test_dmlrunner_same_train_job_with_split_1( \ config_manager, mnist_filepath): model_json = make_model_json() hyperparams = make_hyperparams(split=1) runner = DMLRunner(config_manager) initialize_job = make_initialize_job(model_json) initial_weights = runner.run_job(initialize_job).results['weights'] split_job = make_split_job(model_json, mnist_filepath) job_results = runner.run_job(split_job) session_filepath = job_results.results['session_filepath'] datapoint_count = job_results.results['datapoint_count'] train_job = make_train_job(model_json, initial_weights, hyperparams, session_filepath, datapoint_count) result = runner.run_job(train_job) assert result.status == 'successful' results = result.results new_weights = results['weights'] omega = results['omega'] train_stats = results['train_stats'] assert result.job.job_type is JobTypes.JOB_TRAIN.name assert type(new_weights) == list assert type(new_weights[0]) == np.ndarray assert type(omega) == int or type(omega) == float assert type(train_stats) == dict
def split_dmlresult_obj(runner, mnist_filepath): split_job = make_split_job(mnist_filepath, ) split_job.hyperparams['split'] = 0.75 job_results = runner.run_job(split_job) return job_results