def test_taking_actions(): """Does the environment correctly change the state when told to take an action with and without stochasticity?""" random.seed() env = Gridworld(4, 4, 0.0) # Deterministic tests assert env.next_state(env.initial_state(), Action.up) == env.state_from_grid_position(GridPosition(0, 1)) assert env.next_state(env.initial_state(), Action.down) == env.state_from_grid_position(GridPosition(0, 0)) assert env.next_state(env.initial_state(), Action.left) == env.state_from_grid_position(GridPosition(0, 0)) assert env.next_state(env.initial_state(), Action.right) == env.state_from_grid_position(GridPosition(1, 0)) # Stochastic tests env.failure_rate = 0.1 assert ratio_test(lambda state: state == env.state_from_grid_position(GridPosition(0, 0)), partial(env.next_state, env.initial_state(), Action.left), 10000) == 1.0 ratio = ratio_test(lambda state: state == env.state_from_grid_position(GridPosition(0, 0)), partial(env.next_state, env.initial_state(), Action.up), 10000) assert 0.09 < ratio < 0.11
def test_taking_actions(): """Does the environment correctly change the state when told to take an action with and without stochasticity?""" random.seed() env = GridworldContinuous(0.05, 0.01) start = env.initial_state() ratio = ratio_test(lambda state: np.linalg.norm(np.asarray([state[0] - start[0], state[1] - (start[1] + env.move_mean)]), 2) < env.move_sd * 2, partial(env.next_state, start, Action.up), 10000) assert 0.7 < ratio steps = 0 s = env.initial_state() while not env.is_terminal(s): s = env.next_state(s, np.random.randint(4)) steps += 1 assert steps < 20000
def test_taking_actions(): """Does the environment correctly change the state when told to take an action with and without stochasticity?""" random.seed() env = GridworldContinuous(0.05, 0.01) start = env.initial_state() ratio = ratio_test( lambda state: np.linalg.norm( np.asarray( [state[0] - start[0], state[1] - (start[1] + env.move_mean)]), 2) < env.move_sd * 2, partial(env.next_state, start, Action.up), 10000) assert 0.7 < ratio steps = 0 s = env.initial_state() while not env.is_terminal(s): s = env.next_state(s, np.random.randint(4)) steps += 1 assert steps < 20000