コード例 #1
0
    def test_scenario_risk_insured_losses(self):
        # This test exercises the 'mean-based' path through the Scenario Risk
        # calculator. There is no random sampling done here so the results are
        # 100% predictable.
        scen_cfg = helpers.qa_file('scenario_risk_insured_losses/config.gem')

        exp_mean_loss = 799.102578
        exp_stddev_loss = 382.148808
        expected_loss_map = [
            dict(asset='a3',
                 pos='15.48 38.25',
                 mean=156.750910806,
                 stddev=100.422061776),
            dict(asset='a2',
                 pos='15.56 38.17',
                 mean=314.859579324,
                 stddev=293.976254984),
            dict(asset='a1',
                 pos='15.48 38.09',
                 mean=327.492087529,
                 stddev=288.47906994),
        ]

        result = helpers.run_job(scen_cfg, ['--output-type=xml'],
                                 check_output=True)

        job = OqJob.objects.latest('id')
        self.assertEqual('succeeded', job.status)

        expected_loss_map_file = helpers.qa_file(
            'scenario_risk_insured_losses/computed_output/insured-loss-map%s'
            '.xml' % job.id)

        self.assertTrue(os.path.exists(expected_loss_map_file))

        helpers.verify_loss_map(self, expected_loss_map_file,
                                expected_loss_map, self.LOSSMAP_PRECISION)

        actual_mean, actual_stddev = helpers.mean_stddev_from_result_line(
            result)

        self.assertAlmostEqual(exp_mean_loss,
                               actual_mean,
                               places=self.TOTAL_LOSS_PRECISION)
        self.assertAlmostEqual(exp_stddev_loss,
                               actual_stddev,
                               places=self.TOTAL_LOSS_PRECISION)

        # Cleaning generated results file.
        rmtree(QA_OUTPUT_DIR)
コード例 #2
0
    def test_scenario_risk(self):
        # This test exercises the 'mean-based' path through the Scenario Risk
        # calculator. There is no random sampling done here so the results are
        # 100% predictable.
        scen_cfg = helpers.demo_file('scenario_risk/config.gem')

        exp_mean_loss = 1053.09
        exp_stddev_loss = 246.62
        expected_loss_map = [
            dict(asset='a3',
                 pos='15.48 38.25',
                 mean=180.717534009275,
                 stddev=92.2122644809969),
            dict(asset='a2',
                 pos='15.56 38.17',
                 mean=432.225448142534,
                 stddev=186.864456949986),
            dict(asset='a1',
                 pos='15.48 38.09',
                 mean=440.147078317589,
                 stddev=182.615976701858),
        ]

        result = helpers.run_job(scen_cfg, ['--output-type=xml'],
                                 check_output=True)

        job = OqJob.objects.latest('id')
        self.assertEqual('succeeded', job.status)

        expected_loss_map_file = helpers.demo_file(
            'scenario_risk/computed_output/loss-map-%s.xml' % job.id)

        self.assertTrue(os.path.exists(expected_loss_map_file))

        helpers.verify_loss_map(self, expected_loss_map_file,
                                expected_loss_map, self.LOSSMAP_PRECISION)

        actual_mean, actual_stddev = helpers.mean_stddev_from_result_line(
            result)

        self.assertAlmostEqual(exp_mean_loss,
                               actual_mean,
                               places=self.TOTAL_LOSS_PRECISION)
        self.assertAlmostEqual(exp_stddev_loss,
                               actual_stddev,
                               places=self.TOTAL_LOSS_PRECISION)
コード例 #3
0
    def test_scenario_risk_insured_losses(self):
        # This test exercises the 'mean-based' path through the Scenario Risk
        # calculator. There is no random sampling done here so the results are
        # 100% predictable.
        scen_cfg = helpers.qa_file('scenario_risk_insured_losses/config.gem')

        exp_mean_loss = 799.102578
        exp_stddev_loss = 382.148808
        expected_loss_map = [
            dict(asset='a3', pos='15.48 38.25', mean=156.750910806,
                stddev=100.422061776),
            dict(asset='a2', pos='15.56 38.17', mean=314.859579324,
                stddev=293.976254984),
            dict(asset='a1', pos='15.48 38.09', mean=327.492087529,
                stddev=288.47906994),
            ]

        result = helpers.run_job(scen_cfg, ['--output-type=xml'],
            check_output=True)

        job = OqJob.objects.latest('id')
        self.assertEqual('succeeded', job.status)

        expected_loss_map_file = helpers.qa_file(
            'scenario_risk_insured_losses/computed_output/insured-loss-map%s'
            '.xml' % job.id)

        self.assertTrue(os.path.exists(expected_loss_map_file))

        helpers.verify_loss_map(self, expected_loss_map_file,
            expected_loss_map, self.LOSSMAP_PRECISION)

        actual_mean, actual_stddev = helpers.mean_stddev_from_result_line(result)

        self.assertAlmostEqual(
            exp_mean_loss, actual_mean, places=self.TOTAL_LOSS_PRECISION)
        self.assertAlmostEqual(
            exp_stddev_loss, actual_stddev, places=self.TOTAL_LOSS_PRECISION)

        # Cleaning generated results file.
        rmtree(QA_OUTPUT_DIR)
コード例 #4
0
    def test_scenario_risk(self):
        # This test exercises the 'mean-based' path through the Scenario Risk
        # calculator. There is no random sampling done here so the results are
        # 100% predictable.
        scen_cfg = helpers.demo_file('scenario_risk/config.gem')

        exp_mean_loss = 1053.09
        exp_stddev_loss = 246.62
        expected_loss_map = [
            dict(asset='a3', pos='15.48 38.25', mean=180.717534009275,
                 stddev=92.2122644809969),
            dict(asset='a2', pos='15.56 38.17', mean=432.225448142534,
                 stddev=186.864456949986),
            dict(asset='a1', pos='15.48 38.09', mean=440.147078317589,
                 stddev=182.615976701858),
        ]

        result = helpers.run_job(scen_cfg, ['--output-type=xml'],
                                 check_output=True)

        job = OqJob.objects.latest('id')
        self.assertEqual('succeeded', job.status)

        expected_loss_map_file = helpers.demo_file(
            'scenario_risk/computed_output/loss-map-%s.xml' % job.id)

        self.assertTrue(os.path.exists(expected_loss_map_file))

        helpers.verify_loss_map(self, expected_loss_map_file,
            expected_loss_map, self.LOSSMAP_PRECISION)

        actual_mean, actual_stddev = helpers.mean_stddev_from_result_line(result)

        self.assertAlmostEqual(
            exp_mean_loss, actual_mean, places=self.TOTAL_LOSS_PRECISION)
        self.assertAlmostEqual(
            exp_stddev_loss, actual_stddev, places=self.TOTAL_LOSS_PRECISION)