コード例 #1
0
def test_LinearRegression(dim):
    model_name = "LinearRegression"

    x, y = make_regression(n_samples=1000, n_features=dim)

    model = LinearRegression(dim)
    check_model(model, model_name, x, y, category="regression")
コード例 #2
0
def test_AFM(use_attention, sparse_feature_num):
    model_name = "AFM"

    sample_size = 64
    feature_dim_dict = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"],
                         [sparse_feature_num, sparse_feature_num]):
        if name == "sparse":
            for i in range(num):
                feature_dim_dict[name][name + '_' +
                                       str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                feature_dim_dict[name].append(name + '_' + str(i))
    sparse_input = [
        np.random.randint(0, dim, sample_size)
        for dim in feature_dim_dict['sparse'].values()
    ]
    dense_input = [
        np.random.random(sample_size) for name in feature_dim_dict['dense']
    ]
    y = np.random.randint(0, 2, sample_size)
    x = sparse_input + dense_input

    model = AFM(
        feature_dim_dict,
        use_attention=use_attention,
        keep_prob=0.5,
    )
    check_model(model, model_name, x, y)
コード例 #3
0
def test_LogisticRegression(dim):
    model_name = "LogisticRegression"

    x, y = make_classification(n_samples=1000, n_features=dim)

    model = LogisticRegression(dim)
    check_model(model, model_name, x, y, category="binary_classification")
コード例 #4
0
def test_DCN(embedding_size, cross_num, hidden_size, sparse_feature_num):
    model_name = "DCN"

    sample_size = 64
    feature_dim_dict = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"],
                         [sparse_feature_num, sparse_feature_num]):
        if name == "sparse":
            for i in range(num):
                feature_dim_dict[name][name + '_' +
                                       str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                feature_dim_dict[name].append(name + '_' + str(i))
    sparse_input = [
        np.random.randint(0, dim, sample_size)
        for dim in feature_dim_dict['sparse'].values()
    ]
    dense_input = [
        np.random.random(sample_size) for name in feature_dim_dict['dense']
    ]

    y = np.random.randint(0, 2, sample_size)
    x = sparse_input + dense_input

    model = DCN(
        feature_dim_dict,
        embedding_size=embedding_size,
        cross_num=cross_num,
        hidden_size=hidden_size,
        keep_prob=0.5,
    )
    check_model(model, model_name, x, y)
コード例 #5
0
def test_AFN(afn_dnn_hidden_units, sparse_feature_num, dense_feature_num):
    model_name = 'AFN'
    sample_size = SAMPLE_SIZE
    x, y, feature_columns = get_test_data(
        sample_size, sparse_feature_num=sparse_feature_num, dense_feature_num=dense_feature_num)

    model = AFN(feature_columns, feature_columns, afn_dnn_hidden_units=afn_dnn_hidden_units, device=get_device())

    check_model(model, model_name, x, y)
コード例 #6
0
def test_CCPM_without_seq(sparse_feature_num, dense_feature_num):
    model_name = "CCPM"

    sample_size = SAMPLE_SIZE
    x, y, feature_dim_dict = get_test_data(
        sample_size, sparse_feature_num, dense_feature_num, sequence_feature=())

    model = CCPM(feature_dim_dict, conv_kernel_width=(3, 2), conv_filters=(2, 1), hidden_size=[32, ], keep_prob=0.5, )
    check_model(model, model_name, x, y)
コード例 #7
0
def test_SoftmaxRegression(feat_num, cate_num):
    model_name = "SoftmaxRegression"

    x, y = make_multilabel_classification(n_samples=1000,
                                          n_features=feat_num,
                                          n_classes=cate_num)

    model = SoftmaxRegression(feat_num, cate_num)
    check_model(model, model_name, x, y, category="multi_classification")
コード例 #8
0
def test_FGCNN_without_seq(sparse_feature_num, dense_feature_num):
    model_name = "FGCNN_noseq"

    sample_size = SAMPLE_SIZE
    x, y, feature_dim_dict = get_test_data(
        sample_size, sparse_feature_num, dense_feature_num, sequence_feature=())

    model = FGCNN(feature_dim_dict, conv_kernel_width=(), conv_filters=(
    ), new_maps=(), pooling_width=(), dnn_hidden_units=(32,), dnn_dropout=0.5, )
    # TODO: add model_io check
    check_model(model, model_name, x, y, check_model_io=False)
コード例 #9
0
def test_FGCNN(sparse_feature_num, dense_feature_num):
    model_name = "FGCNN"

    sample_size = 32
    x, y, feature_dim_dict = get_test_data(
        sample_size, sparse_feature_num, dense_feature_num)

    model = FGCNN(feature_dim_dict, conv_kernel_width=(3, 2), conv_filters=(2, 1), new_maps=(
        2, 2), pooling_width=(2, 2), dnn_hidden_units=(32, ), dnn_dropout=0.5, )
    # TODO: add model_io check
    check_model(model, model_name, x, y, check_model_io=False)
コード例 #10
0
def test_CCPM_without_seq(sparse_feature_num, dense_feature_num):
    if tf.__version__ >= "2.0.0":
        return
    model_name = "CCPM"

    sample_size = SAMPLE_SIZE
    x, y, feature_columns = get_test_data(
        sample_size, sparse_feature_num, dense_feature_num, sequence_feature=())

    model = CCPM(feature_columns, feature_columns,conv_kernel_width=(3, 2), conv_filters=(
        2, 1), dnn_hidden_units=[32, ], dnn_dropout=0.5)
    check_model(model, model_name, x, y)
コード例 #11
0
def run_models(config, proto, indices, positions, segments, output,
               popart_model, torch_model):
    onnx_proto = onnx.load_model_from_string(proto)
    check_model(torch_model, onnx_proto, get_mapping(config),
                get_transform(config))

    # Run the models
    popart_inputs = {
        indices:
        np.random.randint(0, config.vocab_length,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32),
        positions:
        np.random.randint(
            0,
            config.sequence_length,
            (config.batch_size * config.sequence_length),
        ).astype(np.uint32),
        segments:
        np.random.randint(
            0,
            2,
            (config.batch_size * config.sequence_length),
        ).astype(np.uint32),
    }

    popart_outputs, post_proto = run_py(
        proto,
        popart_inputs,
        output,
        ipus=popart_model.total_ipus,
    )

    torch_inputs = {
        "input_ids":
        popart_inputs[indices].reshape(config.batch_size,
                                       config.sequence_length),
        "position_ids":
        popart_inputs[positions].reshape(config.batch_size,
                                         config.sequence_length),
        "token_type_ids":
        popart_inputs[segments].reshape(config.batch_size,
                                        config.sequence_length),
    }

    torch_model.eval()
    torch_outputs = run_fwd_model(torch_inputs, torch_model)

    check_model(torch_model, post_proto, get_mapping(config),
                get_transform(config))
    check_tensors(torch_outputs, popart_outputs)
    print("Test succeeded")
コード例 #12
0
def test_activation_function(mode, phase, momentum, micro_batch_size,
                             batch_serialization_factor):

    set_library_seeds(0)

    popart_act_function, pytorch_activation = ACTIVATIONS["Gelu"]
    config = BertConfig(vocab_length=128,
                        micro_batch_size=micro_batch_size,
                        hidden_size=768,
                        sequence_length=128,
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        activation_type=str(popart_act_function))

    data, outputs, proto, post_proto = popart_result_and_model(
        config,
        mode,
        batch_serialization_factor,
        is_bwd=False if phase is 'fwd' else True,
        momentum=momentum)

    inputs = [
        data.reshape(config.micro_batch_size, config.sequence_length,
                     config.hidden_size)
    ]

    #  ------------------- PyTorch -------------------------
    torch_config = TorchBertConfig(config.vocab_length,
                                   config.hidden_size,
                                   config.num_layers,
                                   config.attention_heads,
                                   layer_norm_eps=config.layer_norm_eps,
                                   hidden_dropout_prob=0.,
                                   hidden_act=pytorch_activation)

    torch_output, torch_model = pytorch_result_and_model(
        torch_config,
        inputs,
        proto,
        mode,
        is_bwd=False if phase is 'fwd' else True,
        momentum=momentum)

    check_tensors(torch_output, outputs, margin=7e-6)

    if phase is 'bwd':
        check_model(torch_model,
                    post_proto,
                    TORCH_TO_ONNX[mode],
                    transform=TRANSPOSE_WEIGHTS,
                    margin=7e-6)
コード例 #13
0
def test_SDM():
    model_name = "SDM"
    tf.keras.backend.set_learning_phase(1)
    x, y, user_feature_columns, item_feature_columns, history_feature_list = get_xy_fd_sdm(False)
    K.set_learning_phase(True)

    if tf.__version__ >= '2.0.0':
        tf.compat.v1.disable_eager_execution()

    model = SDM(user_feature_columns, item_feature_columns, history_feature_list, units=8)
    # model.summary()

    model.compile('adam', sampledsoftmaxloss)
    check_model(model, model_name, x, y)
コード例 #14
0
ファイル: CCPM_test.py プロジェクト: zzAlpha/DeepCTR-Torch
def test_CCPM(sparse_feature_num, dense_feature_num):
    model_name = "CCPM"

    sample_size = SAMPLE_SIZE
    x, y, feature_columns = get_test_data(sample_size, sparse_feature_num,
                                          dense_feature_num)

    model = CCPM(feature_columns,
                 feature_columns,
                 conv_kernel_width=(3, 2),
                 conv_filters=(2, 1),
                 dnn_hidden_units=[
                     32,
                 ],
                 dnn_dropout=0.5)
    check_model(model, model_name, x, y)
コード例 #15
0
def test_FM():
    model_name = "FM"

    x, y, user_feature_columns, item_feature_columns = get_xy_fd(False)
    model = FM(
        user_feature_columns,
        item_feature_columns,
    )

    model.compile('adam', "binary_crossentropy")
    check_model(
        model,
        model_name,
        x,
        y,
    )
コード例 #16
0
def test_weight_decay(weight_decay):

    lr = 0.01
    l1_lambda = 0.1

    #  ------------------- PopART -------------------------
    config = BertConfig(vocab_length=128,
                        batch_size=1,
                        hidden_size=768,
                        sequence_length=128,
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        custom_ops=[],
                        activation_type='Gelu')

    data, outputs, proto, post_proto = popart_result_and_model(
        config, weight_decay=weight_decay, lr=lr, l1_lambda=l1_lambda)

    #  ------------------- PyTorch -------------------------
    torch_config = TorchBertConfig(config.vocab_length,
                                   config.hidden_size,
                                   config.num_layers,
                                   config.attention_heads,
                                   layer_norm_eps=config.layer_norm_eps,
                                   hidden_dropout_prob=0.,
                                   hidden_act=nn.functional.gelu)

    inputs = [
        data.reshape(config.batch_size, config.sequence_length,
                     config.hidden_size)
    ]

    torch_output, torch_model = pytorch_result_and_model(
        torch_config,
        inputs,
        proto,
        weight_decay=weight_decay,
        lr=lr,
        l1_lambda=l1_lambda)

    #  ------------------- Check outputs -------------------------
    check_tensors(torch_output, outputs)

    check_model(torch_model,
                post_proto,
                TORCH_TO_ONNX,
                transform=TRANSPOSE_WEIGHTS)
コード例 #17
0
def test_CCPM(sparse_feature_num, dense_feature_num):
    model_name = "CCPM"

    sample_size = 32
    x, y, feature_dim_dict = get_test_data(sample_size, sparse_feature_num,
                                           dense_feature_num)

    model = CCPM(
        feature_dim_dict,
        conv_kernel_width=(3, 2),
        conv_filters=(2, 1),
        dnn_hidden_units=[
            32,
        ],
        dnn_dropout=0.5,
    )
    check_model(model, model_name, x, y)
コード例 #18
0
ファイル: FGCNN_test.py プロジェクト: zenwan/DeepCTR
def test_FGCNN_without_seq(sparse_feature_num, dense_feature_num):
    model_name = "FGCNN"

    sample_size = SAMPLE_SIZE
    x, y, feature_dim_dict = get_test_data(sample_size,
                                           sparse_feature_num,
                                           dense_feature_num,
                                           sequence_feature=())

    model = FGCNN(
        feature_dim_dict,
        conv_kernel_width=(),
        conv_filters=(),
        new_maps=(),
        pooling_width=(),
        hidden_size=(32, ),
        keep_prob=0.5,
    )
    check_model(model, model_name, x, y, check_model_io=False)
コード例 #19
0
ファイル: FGCNN_test.py プロジェクト: zenwan/DeepCTR
def test_FGCNN(sparse_feature_num, dense_feature_num):
    model_name = "FGCNN"

    sample_size = 32
    x, y, feature_dim_dict = get_test_data(sample_size, sparse_feature_num,
                                           dense_feature_num)

    model = FGCNN(
        feature_dim_dict,
        conv_kernel_width=(3, 2),
        conv_filters=(2, 1),
        new_maps=(2, 2),
        pooling_width=(2, 2),
        hidden_size=[
            32,
        ],
        keep_prob=0.5,
    )
    check_model(model, model_name, x, y, check_model_io=False)
コード例 #20
0
ファイル: FGCNN_test.py プロジェクト: gmlyytt-YANG/DeepCTR
def test_FGCNN(sparse_feature_num, dense_feature_num):
    model_name = "FGCNN"

    sample_size = SAMPLE_SIZE
    x, y, feature_columns = get_test_data(
        sample_size,
        embedding_size=8,
        sparse_feature_num=sparse_feature_num,
        dense_feature_num=dense_feature_num)

    model = FGCNN(
        feature_columns,
        feature_columns,
        conv_kernel_width=(3, 2),
        conv_filters=(2, 1),
        new_maps=(2, 2),
        pooling_width=(2, 2),
        dnn_hidden_units=(32, ),
        dnn_dropout=0.5,
    )
    # TODO: add model_io check
    check_model(model, model_name, x, y, check_model_io=False)
コード例 #21
0
def test_activation_function(activation_function, phase, custom_ops):
    popart_act_function, pytorch_activation = ACTIVATIONS[activation_function]
    config = BertConfig(vocab_length=128,
                        batch_size=1,
                        hidden_size=768,
                        sequence_length=128,
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        custom_ops=[],
                        activation_type=str(popart_act_function))

    data, outputs, proto, post_proto = popart_result_and_model(
        config, is_bwd=False if phase is 'fwd' else True)

    inputs = [
        data.reshape(config.batch_size, config.sequence_length,
                     config.hidden_size)
    ]

    #  ------------------- PyTorch -------------------------
    torch_config = TorchBertConfig(config.vocab_length,
                                   config.hidden_size,
                                   config.num_layers,
                                   config.attention_heads,
                                   layer_norm_eps=config.layer_norm_eps,
                                   hidden_dropout_prob=0.,
                                   hidden_act=pytorch_activation)

    torch_output, torch_model = pytorch_result_and_model(
        torch_config, inputs, proto, is_bwd=False if phase is 'fwd' else True)

    check_tensors(torch_output, outputs)

    if phase is 'bwd':
        check_model(torch_model,
                    post_proto,
                    TORCH_TO_ONNX,
                    transform=TRANSPOSE_WEIGHTS)
コード例 #22
0
def bwd_graph(popart_model,
              torch_model,
              popart_loss_fn,
              torch_loss_fn,
              mapping=None,
              transform=None):
    np.random.seed(1984)
    random.seed(1984)
    torch.manual_seed(1984)

    #  ------------------- PopART --------------------
    config = popart_model.config
    builder = popart_model.builder

    sequence_info = popart.TensorInfo(
        "UINT32", [config.batch_size * config.sequence_length])
    indices = builder.addInputTensor(sequence_info)
    positions = builder.addInputTensor(sequence_info)
    segments = builder.addInputTensor(sequence_info)
    data = {
        indices: np.random.randint(
            0, config.vocab_length, (config.batch_size * config.sequence_length)).astype(np.uint32),
        positions: np.random.randint(
            0, config.sequence_length, (config.batch_size * config.sequence_length)).astype(np.uint32),
        segments: np.random.randint(
            0, 2, (config.batch_size * config.sequence_length)).astype(np.uint32)
    }

    output = popart_model.build_graph(indices, positions, segments)
    proto = builder.getModelProto()

    losses = popart_loss_fn(output)

    optimizer = popart.ConstSGD(0.01)

    outputs, post_proto = run_py(
        proto, data, output, loss=losses, optimizer=optimizer,
        ipus=math.ceil(config.num_layers / config.layers_per_ipu) + popart_model.layer_offset)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = {
        "input_ids": data[indices].reshape(config.batch_size, config.sequence_length).astype(np.int32),
        "position_ids": data[positions].reshape(config.batch_size, config.sequence_length).astype(np.int32),
        "token_type_ids": data[segments].reshape(config.batch_size, config.sequence_length).astype(np.int32)
    }

    torch_to_onnx = get_mapping(config, init=mapping)

    transform_weights = get_transform(config, init=transform)

    #  ------------------- PyTorch -------------------------
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model, proto,
                          torch_to_onnx, transform_weights)

    optim = torch.optim.SGD(torch_model.parameters(), 0.01,
                            weight_decay=0.0, momentum=0.0)

    torch_outputs = torch_model(
        **{k: torch.from_numpy(t).long() for k, t in inputs.items()})
    torch_loss = torch_loss_fn(torch_outputs)
    torch_loss.backward()
    optim.step()

    check_tensors([output.detach().numpy() for output in torch_outputs], outputs)

    check_model(torch_model, post_proto,
                torch_to_onnx, transform_weights,
                margin=6e-7)
コード例 #23
0
def test_embedding_bwd(custom_ops):
    #  ------------------- PopART --------------------
    config = BertConfig(task="SQUAD",
                        vocab_length=9728,
                        micro_batch_size=1,
                        hidden_size=768,
                        sequence_length=128,
                        activation_type='relu',
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        update_embedding_dict=True)

    popart_model = Bert(config)
    # Prevent virtualGraph attributes being added to the ops

    sequence_info = popart.TensorInfo(
        "UINT32", [config.micro_batch_size * config.sequence_length])
    indices = popart_model.builder.addInputTensor(sequence_info)
    positions = popart_model.builder.addInputTensor(sequence_info)
    segments = popart_model.builder.addInputTensor(sequence_info)
    data = {
        indices:
        np.random.randint(
            0, config.vocab_length,
            (config.micro_batch_size * config.sequence_length)).astype(
                np.uint32),
        positions:
        np.random.randint(
            0, config.max_positional_length,
            (config.micro_batch_size * config.sequence_length)).astype(
                np.uint32),
        segments:
        np.random.randint(
            0, 2, (config.micro_batch_size * config.sequence_length)).astype(
                np.uint32)
    }

    optimizer = popart.ConstSGD(0.01)

    l1_lambda = 0.1
    with popart_model.builder.nameScope("Embedding"):
        output = popart_model.embedding(indices, positions, segments)
    l1 = popart_model.builder.aiGraphcore.l1loss(
        [output],
        l1_lambda,
        debugContext="l1LossVal",
        reduction=popart.ReductionType.Sum)

    num_reps = 5
    proto = popart_model.builder.getModelProto()
    outputs, post_proto = run_py(proto,
                                 data,
                                 output,
                                 ipus=1,
                                 loss=l1,
                                 num_reps=num_reps,
                                 optimizer=optimizer)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [
        data[t].reshape(config.micro_batch_size,
                        config.sequence_length).astype(np.int32)
        for t in [indices, positions, segments]
    ]

    #  ------------------- PyTorch -------------------------

    torch_model = BertEmbeddings(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        max_position_embeddings=config.max_positional_length,
                        layer_norm_eps=config.layer_norm_eps,
                        update_embedding_dict=config.update_embedding_dict))
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model, proto, TORCH_TO_ONNX, {})

    optim = torch.optim.SGD(torch_model.parameters(), 0.01)
    for _ in range(num_reps):
        torch_output = torch_model(
            *[torch.from_numpy(t).long() for t in inputs])
        torch_loss = l1_lambda * torch.norm(torch_output, 1)
        torch_loss.backward()
        optim.step()
        optim.zero_grad()

    torch_outputs = [torch_output.detach().numpy()]

    check_tensors(torch_outputs, outputs, margin=7e-6)

    check_model(torch_model, post_proto, TORCH_TO_ONNX, {}, margin=7e-06)
コード例 #24
0
def test_embedding_bwd(custom_ops):
    l1_lambda = 0.1

    #  ------------------- PopART --------------------
    builder = popart.Builder(opsets={
        "ai.onnx": 9,
        "ai.onnx.ml": 1,
        "ai.graphcore": 1
    })
    config = BertConfig(vocab_length=9728,
                        batch_size=1,
                        hidden_size=768,
                        sequence_length=128,
                        activation_type='relu',
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        custom_ops=['gather'])
    popart_model = Bert(config, builder=builder)
    # Prevent virtualGraph attributes being added to the ops.
    popart_model.embedding_scope = popart_model.device_scope(None, None)
    popart_model.embedding_split_scope = popart_model.embedding_scope

    sequence_info = popart.TensorInfo(
        "UINT32", [config.batch_size * config.sequence_length])
    indices = builder.addInputTensor(sequence_info)
    positions = builder.addInputTensor(sequence_info)
    segments = builder.addInputTensor(sequence_info)
    data = {
        indices:
        np.random.randint(0, config.vocab_length,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32),
        positions:
        np.random.randint(0, config.max_positional_length,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32),
        segments:
        np.random.randint(0, 2,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32)
    }

    output = popart_model.embedding(indices, positions, segments)

    proto = builder.getModelProto()

    l1 = popart.L1Loss(output, "l1LossVal", l1_lambda)
    optimizer = popart.ConstSGD(0.01)

    outputs, post_proto = run_py(
        proto,
        data,
        output,
        loss=l1,
        optimizer=optimizer,
        user_options={"enableStochasticRounding": True})

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [
        data[t].reshape(config.batch_size,
                        config.sequence_length).astype(np.int32)
        for t in [indices, positions, segments]
    ]

    torch_to_onnx = {
        "word_embeddings.weight": "Embedding_Dict",
        "position_embeddings.weight": "Positional_Dict",
        "token_type_embeddings.weight": "Segment_Dict",
        "LayerNorm.weight": "Gamma",
        "LayerNorm.bias": "Beta"
    }

    transposed_weights = {
        "word_embeddings.weight": np.transpose,
        "position_embeddings.weight": np.transpose,
    }

    #  ------------------- PyTorch -------------------------

    torch_model = BertEmbeddings(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        max_position_embeddings=config.max_positional_length,
                        layer_norm_eps=config.layer_norm_eps))
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model,
                          proto,
                          torch_to_onnx,
                          transform=transposed_weights)

    optim = torch.optim.SGD(torch_model.parameters(),
                            0.01,
                            weight_decay=0.0,
                            momentum=0.0)

    torch_output = torch_model(*[torch.from_numpy(t).long() for t in inputs])
    torch_loss = l1_lambda * torch.norm(torch_output, 1)
    torch_loss.backward()
    optim.step()

    torch_outputs = [torch_output.detach().numpy()]

    check_tensors(torch_outputs, outputs)

    check_model(torch_model,
                post_proto,
                torch_to_onnx,
                transform=transposed_weights)
コード例 #25
0
def test_attention_bwd(custom_ops):
    l1_lambda = 0.1

    #  ------------------- PopART --------------------
    builder = popart.Builder()
    config = BertConfig(task="PRETRAINING",
                        vocab_length=9728,
                        batch_size=1,
                        hidden_size=768,
                        sequence_length=128,
                        activation_type='relu',
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        custom_ops=['attention'])
    popart_model = Bert(config, builder=builder)

    input_info = popart.TensorInfo(
        config.popart_dtype,
        [config.batch_size * config.sequence_length, config.hidden_size])
    input_tensor = builder.addInputTensor(input_info)
    mask_info = popart.TensorInfo("INT32", [config.batch_size])
    mmask_tensor = builder.addInputTensor(mask_info)
    smask_tensor = builder.addInputTensor(mask_info)
    data = {
        input_tensor:
        np.random.normal(0, 0.02, input_info.shape()).astype(config.dtype),
        mmask_tensor:
        np.random.randint(0, config.mask_tokens + 1,
                          (config.batch_size, )).astype(np.int32),
        smask_tensor:
        np.random.randint(config.mask_tokens, config.sequence_length + 1,
                          (config.batch_size, )).astype(np.int32)
    }

    output = popart_model.attention(input_tensor, [mmask_tensor, smask_tensor])
    proto = builder.getModelProto()

    l1 = popart.L1Loss(output, "l1LossVal", l1_lambda)
    optimizer = popart.ConstSGD(0.01)

    outputs, post_proto = run_py(proto,
                                 data, (output, l1.output(0)),
                                 loss=l1,
                                 optimizer=optimizer)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [
        data[input_tensor].reshape(config.batch_size, config.sequence_length,
                                   config.hidden_size),
        get_torch_mask(config, [data[mmask_tensor], data[smask_tensor]])
    ]

    torch_to_onnx = {
        "self.query.weight": "QKV",
        "self.key.weight": "QKV",
        "self.value.weight": "QKV",
        "output.dense.weight": "Out",
        "output.LayerNorm.weight": "Gamma",
        "output.LayerNorm.bias": "Beta"
    }

    split_qkv = {
        "self.query.weight":
        lambda arr: arr[:, 0:config.hidden_size].T,
        "self.key.weight":
        lambda arr: arr[:, config.hidden_size:config.hidden_size * 2].T,
        "self.value.weight":
        lambda arr: arr[:, config.hidden_size * 2:config.hidden_size * 3].T,
        "output.dense.weight":
        np.transpose
    }

    #  ------------------- PyTorch -------------------------
    torch_model = BertAttention(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        config.num_layers,
                        config.attention_heads,
                        layer_norm_eps=config.layer_norm_eps))
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model,
                          proto,
                          torch_to_onnx,
                          transform=split_qkv)

    optim = torch.optim.SGD(torch_model.parameters(),
                            0.01,
                            weight_decay=0.0,
                            momentum=0.0)

    torch_output = torch_model(*[torch.from_numpy(t).float()
                                 for t in inputs])[0]
    torch_loss = l1_lambda * torch.norm(torch_output, 1)
    torch_loss.backward()
    optim.step()

    check_tensors([torch_output.detach().numpy()], outputs)

    check_model(torch_model, post_proto, torch_to_onnx, transform=split_qkv)
コード例 #26
0
def test_embedding_projection_bwd(custom_ops):
    l1_lambda = 0.1

    #  ------------------- PopART --------------------
    builder = popart.Builder(opsets={
        "ai.onnx": 9,
        "ai.onnx.ml": 1,
        "ai.graphcore": 1
    })
    config = BertConfig(vocab_length=9728,
                        embedding_serialization_vocab_steps=4,
                        micro_batch_size=1,
                        hidden_size=288,
                        sequence_length=128,
                        activation_type='relu',
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        no_cls_layer=False,
                        # Currently updating embedding dict with projection is only
                        # available with momentum. And PopART != Pytorch momentum
                        # due to a bootstrapping step on iter 0.
                        update_embedding_dict=False)
    popart_model = Bert(config, builder=builder)

    sequence_info = popart.TensorInfo(
        "UINT32", [config.micro_batch_size * config.sequence_length])
    indices = builder.addInputTensor(sequence_info)
    data = {
        indices:
        np.random.randint(0, config.vocab_length,
                          (config.micro_batch_size * config.sequence_length)).astype(
                              np.uint32)
    }

    x = popart_model.gather(
        indices, config.vocab_length, "Embedding_Dict")
    x = popart_model.norm(x)
    x = popart_model.dropout(x)
    with popart_model.device_scope(nameScope="CLS"):
        x = popart_model.lm_prediction_head(x)
    output = popart_model.projection(x)
    l1 = builder.aiGraphcore.l1loss(
        [output], l1_lambda, debugPrefix="l1LossVal", reduction=popart.ReductionType.Sum)

    proto = builder.getModelProto()

    optimizer = popart.ConstSGD(0.01)

    outputs, post_proto = run_py(proto,
                                 data, output,
                                 loss=l1,
                                 optimizer=optimizer)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [data[indices].reshape(
        config.micro_batch_size, config.sequence_length).astype(np.int32)]

    #  ------------------- PyTorch -------------------------

    torch_model = EmbeddingProjectionModel(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        max_position_embeddings=config.max_positional_length,
                        layer_norm_eps=config.layer_norm_eps,
                        no_cls_layer=config.no_cls_layer,
                        update_embedding_dict=config.update_embedding_dict))
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model,
                          proto,
                          TORCH_TO_ONNX,
                          transform=TRANSPOSE_WEIGHTS)

    optim = torch.optim.SGD(torch_model.parameters(),
                            0.01,
                            weight_decay=0.0,
                            momentum=0.0)

    torch_output = torch_model(*[torch.from_numpy(t).long() for t in inputs])
    torch_loss = l1_lambda * torch.norm(torch_output, 1)
    torch_loss.backward()
    optim.step()

    check_tensors([torch_output.detach().numpy()], outputs, margin=1e-5)

    check_model(torch_model,
                post_proto,
                TORCH_TO_ONNX,
                transform=TRANSPOSE_WEIGHTS)
コード例 #27
0
def test_embedding_projection_bwd(custom_ops):
    l1_lambda = 0.1

    #  ------------------- PopART --------------------
    builder = popart.Builder(opsets={
        "ai.onnx": 9,
        "ai.onnx.ml": 1,
        "ai.graphcore": 1
    })
    config = BertConfig(vocab_length=9728,
                        batch_size=1,
                        hidden_size=768,
                        sequence_length=128,
                        activation_type='relu',
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        custom_ops=['gather'])
    popart_model = Bert(config, builder=builder)

    sequence_info = popart.TensorInfo(
        "INT32", [config.batch_size * config.sequence_length])
    indices = builder.addInputTensor(sequence_info)
    data = {
        indices:
        np.random.randint(0, config.vocab_length,
                          (config.batch_size * config.sequence_length)).astype(
                              np.int32)
    }

    x = popart_model.embedding_custom(
        indices, config.vocab_length, "Embedding_Dict", detach=True)
    x = popart_model.norm(x)
    x = popart_model.dropout(x)
    with popart_model.device_scope(nameScope="CLS"):
        x = popart_model.lm_prediction_head(x)
    output = popart_model.projection(x)

    proto = builder.getModelProto()

    l1 = popart.L1Loss(output, "l1LossVal", l1_lambda)
    optimizer = popart.ConstSGD(0.01)

    outputs, post_proto = run_py(proto,
                                 data, output,
                                 loss=l1,
                                 optimizer=optimizer,
                                 user_options={"enableStochasticRounding": True})

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [data[indices].reshape(config.batch_size, config.sequence_length)]

    #  ------------------- PyTorch -------------------------

    torch_model = EmbeddingProjectionModel(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        max_position_embeddings=config.max_positional_length,
                        layer_norm_eps=config.layer_norm_eps))
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model,
                          proto,
                          torch_to_onnx,
                          transform=transposed_weights)

    optim = torch.optim.SGD(torch_model.parameters(),
                            0.01,
                            weight_decay=0.0,
                            momentum=0.0)

    torch_output = torch_model(*[torch.from_numpy(t).long() for t in inputs])
    torch_loss = l1_lambda * torch.norm(torch_output, 1)
    torch_loss.backward()
    optim.step()

    check_tensors([torch_output.detach().numpy()], outputs, margin=1e-5)

    check_model(torch_model,
                post_proto,
                torch_to_onnx,
                transform=transposed_weights)
コード例 #28
0
def test_attention_bwd(mode, momentum, micro_batch_size,
                       batch_serialisation_factor, number_attention_splits,
                       attention_bias):
    l1_lambda = 0.1
    num_reps = 5
    np.random.seed(1984)
    torch.manual_seed(1984)
    split_qkv = False

    #  ------------------- PopART --------------------
    config = BertConfig(task="PRETRAINING",
                        vocab_length=9728,
                        micro_batch_size=micro_batch_size,
                        hidden_size=768,
                        sequence_length=128,
                        activation_type='relu',
                        popart_dtype="FLOAT",
                        no_dropout=True,
                        no_attn_dropout=True,
                        split_qkv=split_qkv,
                        attention_bias=attention_bias,
                        num_attention_splits=number_attention_splits)
    popart_model = get_model(config, mode, 'attention')

    input_info = popart.TensorInfo(
        config.popart_dtype,
        [config.micro_batch_size * config.sequence_length, config.hidden_size])
    input_tensor = popart_model.builder.addInputTensor(input_info)
    mask_info = popart.TensorInfo(
        "UINT32", [config.micro_batch_size, config.sequence_length])
    mmask_tensor = popart_model.builder.addInputTensor(mask_info)
    smask_tensor = popart_model.builder.addInputTensor(mask_info)
    data = {
        input_tensor:
        np.random.normal(0, 0.02, input_info.shape()).astype(config.dtype),
        mmask_tensor:
        np.random.randint(0, config.mask_tokens + 1, (
            config.micro_batch_size,
            config.sequence_length,
        )).astype(np.uint32),
        smask_tensor:
        np.random.randint(config.mask_tokens, config.sequence_length + 1, (
            config.micro_batch_size,
            config.sequence_length,
        )).astype(np.uint32)
    }

    user_options = {}
    if mode == ExecutionMode.PHASED:
        user_options = {
            "batchSerializationFactor": batch_serialisation_factor,
            "executionPhases": popart_model.total_execution_phases
        }
        output = popart_model(input_tensor, [mmask_tensor, smask_tensor])
        with popart_model.scope_provider(popart_model.builder,
                                         popart_model.norm.scope):
            l1 = popart_model.builder.aiGraphcore.l1loss(
                [output],
                l1_lambda,
                debugPrefix="l1LossVal",
                reduction=popart.ReductionType.Sum)
    else:
        user_options = {}
        output = popart_model.attention(input_tensor,
                                        [mmask_tensor, smask_tensor])
        l1 = popart_model.builder.aiGraphcore.l1loss(
            [output], l1_lambda, reduction=popart.ReductionType.Sum)

    proto = popart_model.builder.getModelProto()

    if momentum:
        optimizer = popart.SGD({
            "defaultLearningRate": (0.01, True),
            "defaultMomentum": (momentum, True)
        })
    else:
        optimizer = popart.ConstSGD(0.01)

    outputs, post_proto = run_py(proto,
                                 data, (output, l1),
                                 loss=l1,
                                 optimizer=optimizer,
                                 num_reps=num_reps,
                                 user_options=user_options,
                                 execution_mode=mode)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [
        data[input_tensor].reshape(config.micro_batch_size,
                                   config.sequence_length, config.hidden_size),
        get_torch_mask(config, [data[mmask_tensor], data[smask_tensor]])
    ]

    #  ------------------- PyTorch -------------------------
    torch_model = BertAttention(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        config.num_layers,
                        config.attention_heads,
                        attention_bias=config.attention_bias,
                        layer_norm_eps=config.layer_norm_eps))
    # Turn off dropout
    torch_model.eval()

    mapping = TORCH_TO_ONNX[mode]
    if split_qkv:
        mapping = TORCH_TO_ONNX_SPLIT_QKV[mode]

    copy_weights_to_torch(torch_model,
                          proto,
                          mapping,
                          transform=get_transform(split_qkv,
                                                  config.hidden_size))

    optim = torch.optim.SGD(torch_model.parameters(),
                            0.01,
                            weight_decay=0.0,
                            momentum=momentum)

    if momentum:
        for group in optim.param_groups:
            for p in group['params']:
                optim.state[p]['momentum_buffer'] = p.data * 0
                optim.state[p]['exp_avg'] = p.data * 0
                optim.state[p]['exp_avg_sq'] = p.data * 0
                optim.state[p]['step'] = 0

    for _ in range(num_reps):
        torch_output = torch_model(
            *[torch.from_numpy(t).float() for t in inputs])[0]
        torch_loss = l1_lambda * torch.norm(torch_output, 1)
        torch_loss.backward()
        optim.step()
        optim.zero_grad()

    check_tensors([torch_output.detach().numpy()], outputs, margin=6e-07)

    check_model(torch_model,
                post_proto,
                mapping,
                transform=get_transform(split_qkv, config.hidden_size),
                margin=2e-7)
コード例 #29
0
def bwd_graph(popart_model,
              torch_model,
              popart_loss_fn,
              torch_loss_fn,
              mapping=None,
              transform=None,
              replication_factor=1,
              replicated_tensor_sharding=False,
              opt_type="SGD"):
    np.random.seed(1984)
    random.seed(1984)
    torch.manual_seed(1984)

    #  ------------------- PopART --------------------
    config = popart_model.config
    builder = popart_model.builder

    sequence_info = popart.TensorInfo(
        "UINT32", [config.micro_batch_size * config.sequence_length])
    indices = builder.addInputTensor(sequence_info)
    positions = builder.addInputTensor(sequence_info)
    segments = builder.addInputTensor(sequence_info)
    data = {
        indices:
        np.random.randint(0, config.vocab_length,
                          (replication_factor, config.micro_batch_size *
                           config.sequence_length)).astype(np.uint32),
        positions:
        np.random.randint(0, config.sequence_length,
                          (replication_factor, config.micro_batch_size *
                           config.sequence_length)).astype(np.uint32),
        segments:
        np.random.randint(0, 2, (replication_factor, config.micro_batch_size *
                                 config.sequence_length)).astype(np.uint32)
    }
    num_reps = 5
    output = popart_model.build_graph(indices, positions, segments)
    ipus = popart_model.total_ipus

    loss = popart_loss_fn(output)

    proto = builder.getModelProto()

    if opt_type == "SGD":
        optimizer = popart.ConstSGD(1e-3)
    elif opt_type == "LAMB":
        optMap = {
            "defaultLearningRate": (1e-3, True),
            "defaultBeta1": (0.9, True),
            "defaultBeta2": (0.999, True),
            "defaultWeightDecay": (0.0, True),
            "maxWeightNorm": (10.0, True),
            "defaultEps": (1e-8, True),
            "lossScaling": (1.0, True),
        }
        optimizer = popart.Adam(optMap, mode=popart.AdamMode.Lamb)
    elif opt_type == "LAMB_NO_BIAS":
        optMap = {
            "defaultLearningRate": (1, False),
            "defaultBeta1": (0, False),
            "defaultBeta2": (0, False),
            "defaultWeightDecay": (0.0, False),
            "defaultEps": (1e-8, False),
            "lossScaling": (1.0, False),
        }
        optimizer = popart.Adam(optMap, mode=popart.AdamMode.LambNoBias)
    else:
        raise ValueError(f"Unknown opt_type={opt_type}")

    outputs, post_proto = run_py(
        proto,
        data,
        output,
        loss=loss,
        optimizer=optimizer,
        replication_factor=replication_factor,
        replicated_tensor_sharding=replicated_tensor_sharding,
        ipus=ipus,
        num_reps=num_reps)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = {
        "input_ids":
        data[indices].reshape(replication_factor * config.micro_batch_size,
                              config.sequence_length).astype(np.int32),
        "position_ids":
        data[positions].reshape(replication_factor * config.micro_batch_size,
                                config.sequence_length).astype(np.int32),
        "token_type_ids":
        data[segments].reshape(replication_factor * config.micro_batch_size,
                               config.sequence_length).astype(np.int32)
    }

    torch_to_onnx = get_mapping(config, init=mapping)

    transform_weights = get_transform(config, init=transform)

    #  ------------------- PyTorch -------------------------
    # Turn off dropout
    torch_model.eval()

    copy_weights_to_torch(torch_model, proto, torch_to_onnx, transform_weights)

    if opt_type == "SGD":
        optim = torch.optim.SGD(torch_model.parameters(),
                                1e-3,
                                weight_decay=0.0,
                                momentum=0.0)
    elif opt_type == "LAMB":
        optim = torch_lamb.Lamb(torch_model.parameters(),
                                lr=1e-3,
                                weight_decay=0.0,
                                biasCorrection=True)

    for _ in range(num_reps):
        torch_outputs = torch_model(
            **{k: torch.from_numpy(t).long()
               for k, t in inputs.items()})
        torch_loss = torch_loss_fn(torch_outputs)
        torch_loss.backward()
        optim.step()
        optim.zero_grad()

    check_tensors([output.detach().numpy() for output in torch_outputs],
                  outputs,
                  margin=1.5e-06)

    check_model(torch_model,
                post_proto,
                torch_to_onnx,
                transform_weights,
                margin=5e-5)
コード例 #30
0
def embedding_bwd(custom_ops,
                  mode,
                  momentum,
                  batch_size,
                  batch_serialization_factor,
                  embedding_serialization_vocab_steps,
                  vocab_length=9728,
                  hidden_size=768):
    #  ------------------- PopART --------------------
    config = BertConfig(
        task="SQUAD",
        vocab_length=vocab_length,
        batch_size=batch_size,
        hidden_size=hidden_size,
        sequence_length=128,
        activation_type='relu',
        popart_dtype="FLOAT",
        no_dropout=True,
        update_embedding_dict=True,
        embedding_serialization_vocab_steps=embedding_serialization_vocab_steps
    )

    popart_model = get_model(config, mode, 'embedding')
    # Prevent virtualGraph attributes being added to the ops

    sequence_info = popart.TensorInfo(
        "UINT32", [config.batch_size * config.sequence_length])
    indices = popart_model.builder.addInputTensor(sequence_info)
    positions = popart_model.builder.addInputTensor(sequence_info)
    segments = popart_model.builder.addInputTensor(sequence_info)
    data = {
        indices:
        np.random.randint(0, config.vocab_length,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32),
        positions:
        np.random.randint(0, config.max_positional_length,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32),
        segments:
        np.random.randint(0, 2,
                          (config.batch_size * config.sequence_length)).astype(
                              np.uint32)
    }

    if momentum:
        optimizer = popart.SGD({
            "defaultLearningRate": (0.01, True),
            "defaultMomentum": (momentum, True),
            "defaultDampening": (0.0, True),
            "defaultVelocityScaling": (1.0, True),
            "lossScaling": (1.0, True),
            "defaultWeightDecay": (0.0, True)
        })
    else:
        optimizer = popart.ConstSGD(0.01)

    l1_lambda = 0.1

    if mode == ExecutionMode.PHASED:
        user_options = {
            "batchSerializationFactor": batch_serialization_factor,
            "executionPhases": popart_model.total_execution_phases,
        }
        output = popart_model(indices, positions, segments)
        with popart_model.scope_provider(popart_model.builder,
                                         popart_model.norm.scope):
            l1 = popart_model.builder.aiGraphcore.l1loss(
                [output],
                l1_lambda,
                debugPrefix="l1LossVal",
                reduction=popart.ReductionType.Sum)
    else:
        user_options = {"enableStochasticRounding": True}
        with popart_model.builder.nameScope("Embedding"):
            output = popart_model.embedding(indices, positions, segments)
        l1 = popart_model.builder.aiGraphcore.l1loss(
            [output],
            l1_lambda,
            debugPrefix="l1LossVal",
            reduction=popart.ReductionType.Sum)

    num_reps = 5
    proto = popart_model.builder.getModelProto()
    outputs, post_proto = run_py(proto,
                                 data,
                                 output,
                                 ipus=1,
                                 loss=l1,
                                 num_reps=num_reps,
                                 optimizer=optimizer,
                                 user_options=user_options,
                                 execution_mode=mode)

    # ----------------- PopART -> PyTorch ----------------
    proto = onnx.load_model_from_string(proto)

    inputs = [
        data[t].reshape(config.batch_size,
                        config.sequence_length).astype(np.int32)
        for t in [indices, positions, segments]
    ]

    #  ------------------- PyTorch -------------------------

    torch_model = BertEmbeddings(
        TorchBertConfig(config.vocab_length,
                        config.hidden_size,
                        max_position_embeddings=config.max_positional_length,
                        layer_norm_eps=config.layer_norm_eps,
                        update_embedding_dict=config.update_embedding_dict))
    # Turn off dropout
    torch_model.eval()

    expanded_name_map, remapped_transform_map = expand_torch_to_onnx_map(
        TORCH_TO_ONNX[mode], config, mode)
    copy_weights_to_torch(torch_model, proto, expanded_name_map,
                          remapped_transform_map)

    optim = torch.optim.SGD(torch_model.parameters(),
                            0.01,
                            weight_decay=0.0,
                            dampening=0.0,
                            momentum=momentum)

    if momentum > 0.:
        for group in optim.param_groups:
            for p in group['params']:
                optim.state[p]['momentum_buffer'] = p.data * 0
                optim.state[p]['exp_avg'] = p.data * 0
                optim.state[p]['exp_avg_sq'] = p.data * 0
                optim.state[p]['step'] = 0

    for _ in range(num_reps):
        torch_output = torch_model(
            *[torch.from_numpy(t).long() for t in inputs])
        torch_loss = l1_lambda * torch.norm(torch_output, 1)
        torch_loss.backward()
        optim.step()
        optim.zero_grad()

    torch_outputs = [torch_output.detach().numpy()]

    check_tensors(torch_outputs, outputs, margin=7e-6)

    expanded_name_map, remapped_transform_map = expand_torch_to_onnx_map(
        TORCH_TO_ONNX[mode], config, mode)
    check_model(torch_model,
                post_proto,
                expanded_name_map,
                remapped_transform_map,
                margin=7e-06)