コード例 #1
0
ファイル: layers_test.py プロジェクト: whs1111/texar-pytorch
    def test_layer_logic(self):
        r"""Test the logic of MergeLayer.
        """
        layers_ = list()
        layers_.append(nn.Conv1d(in_channels=32, out_channels=32,
                                 kernel_size=3))
        layers_.append(nn.Conv1d(in_channels=32, out_channels=32,
                                 kernel_size=3))
        layers_.append(nn.Conv1d(in_channels=32, out_channels=32,
                                 kernel_size=3))

        modes = ["concat", "sum", "mean", "prod", "max", "min", "logsumexp",
                 "elemwise_sum", "elemwise_mul"]

        for mode in modes:
            m_layer = layers.MergeLayer(layers_, mode=mode)
            input = torch.randn(32, 32, 10)
            output = m_layer(input)

            if mode == "concat":
                self.assertEqual(output.shape, torch.Size([32, 32, 24]))
            elif mode == "elemwise_sum" or mode == "elemwise_mul":
                self.assertEqual(output.shape, torch.Size([32, 32, 8]))
            else:
                self.assertEqual(output.shape, torch.Size([32, 32]))

        for mode in ["and", "or"]:
            m_layer = layers.MergeLayer(layers=None, mode=mode)
            input = torch.ones(32, 32, 10, dtype=torch.uint8)
            output = m_layer(input)

            self.assertEqual(output.shape, torch.Size([32, 32]))
コード例 #2
0
ファイル: layers_test.py プロジェクト: whs1111/texar-pytorch
 def test_empty_merge_layer(self):
     r"""Test the output of MergeLayer with empty layers.
     """
     m_layer = layers.MergeLayer(layers=None)
     input = torch.randn(32, 32, 10)
     output = m_layer(input)
     self.assertEqual(torch.all(torch.eq(output, input)), 1)
コード例 #3
0
    def test_output_shape(self):
        """Tests MergeLayer.compute_output_shape function.
        """
        input_shapes = [[None, 1, 2], [64, 2, 2], [None, 3, 2]]

        concat_layer = layers.MergeLayer(mode='concat', axis=1)
        concat_output_shape = concat_layer.compute_output_shape(input_shapes)
        self.assertEqual(concat_output_shape, [64, 6, 2])

        sum_layer = layers.MergeLayer(mode='sum', axis=1)
        sum_output_shape = sum_layer.compute_output_shape(input_shapes)
        self.assertEqual(sum_output_shape, [64, 2])

        input_shapes = [[None, 5, 2], [64, None, 2], [2]]
        esum_layer = layers.MergeLayer(mode='elemwise_sum')
        esum_output_shape = esum_layer.compute_output_shape(input_shapes)
        self.assertEqual(esum_output_shape, [64, 5, 2])
コード例 #4
0
    def test_trainable_variables(self):
        """Test the trainable_variables of the layer.
        """
        layers_ = []
        layers_.append(tf.layers.Conv1D(filters=200, kernel_size=3))
        layers_.append(tf.layers.Conv1D(filters=200, kernel_size=4))
        layers_.append(tf.layers.Conv1D(filters=200, kernel_size=5))
        layers_.append(tf.layers.Dense(200))
        layers_.append(tf.layers.Dense(200))
        m_layer = layers.MergeLayer(layers_)

        inputs = tf.zeros([64, 16, 1024], dtype=tf.float32)
        _ = m_layer(inputs)

        num_vars = sum([len(layer.trainable_variables) for layer in layers_])
        self.assertEqual(num_vars, len(m_layer.trainable_variables))
コード例 #5
0
    def test_layer_logics(self):
        r"""Test the logic of MergeLayer.
        """
        layers_ = list()
        layers_.append(
            nn.Conv1d(in_channels=32, out_channels=32, kernel_size=3))
        layers_.append(
            nn.Conv1d(in_channels=32, out_channels=32, kernel_size=4))
        layers_.append(
            nn.Conv1d(in_channels=32, out_channels=32, kernel_size=5))
        layers_.append(nn.Linear(in_features=10, out_features=64))
        layers_.append(nn.Linear(in_features=10, out_features=64))
        m_layer = layers.MergeLayer(layers_)

        input = torch.randn(32, 32, 10)
        output = m_layer(input)
        self.assertEqual(output.shape, torch.Size([32, 32, 149]))
コード例 #6
0
    def test_layer_logics(self):
        """Test the logic of MergeLayer.
        """
        layers_ = []
        layers_.append(tf.layers.Conv1D(filters=200, kernel_size=3))
        layers_.append(tf.layers.Conv1D(filters=200, kernel_size=4))
        layers_.append(tf.layers.Conv1D(filters=200, kernel_size=5))
        layers_.append(tf.layers.Dense(200))
        layers_.append(tf.layers.Dense(200))
        m_layer = layers.MergeLayer(layers_)

        inputs = tf.zeros([64, 16, 1024], dtype=tf.float32)
        outputs = m_layer(inputs)
        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            outputs_ = sess.run(outputs)
            self.assertEqual(outputs_.shape[0], 64)
            self.assertEqual(outputs_.shape[2], 200)
            self.assertEqual(
                outputs_.shape,
                m_layer.compute_output_shape(inputs.shape.as_list()))