app = FastAPI( title="text-classification", description="", version="1.0.0", ) # Get best run best_run = utils.get_best_run(project="mahjouri-saamahn/mwml-httynn-app_v2", metric="test_loss", objective="minimize") # Load best run (if needed) best_run_dir = utils.load_run(run=best_run) # Get run components for prediction args, model, X_tokenizer, y_tokenizer = predict.get_run_components( run_dir=best_run_dir) @utils.construct_response @app.get("/") async def _index(): response = { 'message': HTTPStatus.OK.phrase, 'status-code': HTTPStatus.OK, 'data': {} } config.logger.info(json.dumps(response, indent=2)) return response
# Title st.title("Creating an End-to-End ML Application") st.write("""[<img src="https://github.com/madewithml/images/blob/master/images/yt.png?raw=true" style="width:1.2rem;"> Watch Lesson](https://www.youtube.com/madewithml?sub_confirmation=1) ┬╖ [<img src="https://github.com/madewithml/images/blob/master/images/github_logo.png?raw=true" style="width:1.1rem;"> GitHub](https://github.com/madewithml/e2e-ml-app-pytorch) ┬╖ [<img src="https://avatars0.githubusercontent.com/u/60439358?s=200&v=4" style="width:1.2rem;"> Made With ML](https://madewithml.com)""", unsafe_allow_html=True) st.write("Video lesson coming soon...") # Get best run project = 'mahjouri-saamahn/mwml-tutorial-app' best_run = utils.get_best_run(project=project, metric="test_loss", objective="minimize") # Load best run (if needed) best_run_dir = utils.load_run(run=best_run) # Get run components for prediction model, word_map = predict.get_run_components(run_dir=best_run_dir) # Pages page = st.sidebar.selectbox( "Choose a page", ['Prediction', 'Model details']) if page == 'Prediction': st.header("ЁЯЪА Try it out!") # Input text text = st.text_input( "Enter text to classify", value="The Canadian government officials proposed the new federal law.") # Predict results = predict.predict(inputs=[{'text': text}], model=model, word_map=word_map)