コード例 #1
0
    def get_log_probs_at_index(self, text_list, word_index):
        """ Gets the probability of the word at index `word_index` according
            to GPT-2. Assumes that all items in `text_list`
            have the same prefix up until `word_index`.
        """
        prefix = text_list[0].text_until_word_index(word_index)

        if not utils.has_letter(prefix):
            # This language model perplexity is not defined with respect to
            # a word without a prefix. If the prefix is null, just return the
            # log-probability 0.0.
            return torch.zeros(len(text_list), dtype=torch.float)

        token_ids = self.tokenizer.encode(prefix)
        tokens_tensor = torch.tensor([token_ids])
        tokens_tensor = tokens_tensor.to(utils.device)

        with torch.no_grad():
            outputs = self.model(tokens_tensor)
        predictions = outputs[0]

        probs = []
        for attacked_text in text_list:
            next_word_ids = self.tokenizer.encode(
                attacked_text.words[word_index])
            next_word_prob = predictions[0, -1, next_word_ids[0]]
            probs.append(next_word_prob)

        return probs
コード例 #2
0
    def _get_replacement_words_by_grad(self, text, indices_to_replace):
        """ Returns returns a list containing all possible words to replace
            `word` with, based off of the model's gradient.
            
            Arguments:
                text (TokenizedText): The full text input to perturb
                word_index (int): index of the word to replace
        """
        self.model.train()

        lookup_table = self.model.lookup_table.to(utils.get_device())
        lookup_table_transpose = lookup_table.transpose(0, 1)

        # set backward hook on the word embeddings for input x
        emb_hook = Hook(self.model.word_embeddings, backward=True)

        self.model.zero_grad()
        predictions = self._call_model(text)
        original_label = predictions.argmax()
        y_true = torch.Tensor([original_label]).long().to(utils.get_device())
        loss = self.loss(predictions, y_true)
        loss.backward()

        # grad w.r.t to word embeddings
        emb_grad = emb_hook.output[0].to(utils.get_device()).squeeze()

        # grad differences between all flips and original word (eq. 1 from paper)
        vocab_size = lookup_table.size(0)
        diffs = torch.zeros(len(indices_to_replace), vocab_size)
        indices_to_replace = list(indices_to_replace)
        for j, word_idx in enumerate(indices_to_replace):
            # Get the grad w.r.t the one-hot index of the word.
            b_grads = emb_grad[word_idx].view(
                1, -1).mm(lookup_table_transpose).squeeze()
            a_grad = b_grads[text.ids[0][word_idx]]
            diffs[j] = b_grads - a_grad

        # Don't change to the pad token.
        diffs[:, self.model.tokenizer.pad_id] = float('-inf')

        # Find best indices within 2-d tensor by flattening.
        word_idxs_sorted_by_grad = (-diffs).flatten().argsort()

        candidates = []
        num_words_in_text, num_words_in_vocab = diffs.shape
        for idx in word_idxs_sorted_by_grad.tolist():
            idx_in_diffs = idx // num_words_in_vocab
            idx_in_vocab = idx % (num_words_in_vocab)
            idx_in_sentence = indices_to_replace[idx_in_diffs]
            word = self.model.tokenizer.convert_id_to_word(idx_in_vocab)
            if not utils.has_letter(word):
                # Do not consider words that are solely letters or punctuation.
                continue
            candidates.append((word, idx_in_sentence))
            if len(candidates) == self.top_n:
                break

        self.model.eval()
        return candidates
コード例 #3
0
    def _get_replacement_words_by_grad(self, attacked_text,
                                       indices_to_replace):
        """Returns returns a list containing all possible words to replace
        `word` with, based off of the model's gradient.

        Arguments:
            attacked_text (AttackedText): The full text input to perturb
            word_index (int): index of the word to replace
        """

        lookup_table = self.model.get_input_embeddings().weight.data.cpu()

        grad_output = self.model_wrapper.get_grad(
            attacked_text.tokenizer_input)
        emb_grad = torch.tensor(grad_output["gradient"])
        text_ids = grad_output["ids"]
        # grad differences between all flips and original word (eq. 1 from paper)
        vocab_size = lookup_table.size(0)
        diffs = torch.zeros(len(indices_to_replace), vocab_size)
        indices_to_replace = list(indices_to_replace)

        for j, word_idx in enumerate(indices_to_replace):
            # Make sure the word is in bounds.
            if word_idx >= len(emb_grad):
                continue
            # Get the grad w.r.t the one-hot index of the word.
            b_grads = lookup_table.mv(emb_grad[word_idx]).squeeze()
            a_grad = b_grads[text_ids[word_idx]]
            diffs[j] = b_grads - a_grad

        # Don't change to the pad token.
        diffs[:, self.tokenizer.pad_token_id] = float("-inf")

        # Find best indices within 2-d tensor by flattening.
        word_idxs_sorted_by_grad = (-diffs).flatten().argsort()

        candidates = []
        num_words_in_text, num_words_in_vocab = diffs.shape
        for idx in word_idxs_sorted_by_grad.tolist():
            idx_in_diffs = idx // num_words_in_vocab
            idx_in_vocab = idx % (num_words_in_vocab)
            idx_in_sentence = indices_to_replace[idx_in_diffs]
            word = self.tokenizer.convert_id_to_word(idx_in_vocab)
            if (not utils.has_letter(word)) or (len(
                    utils.words_from_text(word)) != 1):
                # Do not consider words that are solely letters or punctuation.
                continue
            candidates.append((word, idx_in_sentence))
            if len(candidates) == self.top_n:
                break

        return candidates