def dice_coef(y_true, y_pred, epsilon=1e-5):
    dice_numerator = 2.0 * K.sum(y_true * y_pred, axis=[1, 2, 3, 4])
    dice_denominator = K.sum(K.square(y_true), axis=[1, 2, 3, 4]) + K.sum(
        K.square(y_pred), axis=[1, 2, 3, 4])

    dice_score = dice_numerator / (dice_denominator + epsilon)
    return K.mean(dice_score, axis=0)
コード例 #2
0
def dice_coef(y_true, y_pred, smooth=1):
    """
    https://radiopaedia.org/articles/dice-similarity-coefficient
    """
    intersection = K.sum(y_true * y_pred, axis=[1, 2, 3])
    sum_of_cardinals = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred,
                                                             axis=[1, 2, 3])
    return K.mean((2.0 * intersection + smooth) / (sum_of_cardinals + smooth),
                  axis=0)
コード例 #3
0
def dice_coef(y_true, y_pred, smooth=1):
    intersection = K.sum(y_true * y_pred, axis=[1, 2, 3])
    union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3])
    return K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
コード例 #4
0
    def __init__(self,
                 n_word_vocab=50001,
                 n_role_vocab=7,
                 n_factors_emb=256,
                 n_factors_cls=512,
                 n_hidden=256,
                 word_vocabulary={},
                 role_vocabulary={},
                 unk_word_id=50000,
                 unk_role_id=7,
                 missing_word_id=50001,
                 using_dropout=False,
                 dropout_rate=0.3,
                 optimizer='adagrad',
                 loss='sparse_categorical_crossentropy',
                 metrics=['accuracy']):
        super(NNRF_ResROFA,
              self).__init__(n_word_vocab, n_role_vocab, n_factors_emb,
                             n_hidden, word_vocabulary, role_vocabulary,
                             unk_word_id, unk_role_id, missing_word_id,
                             using_dropout, dropout_rate, optimizer, loss,
                             metrics)

        # minus 1 here because one of the role is target role
        self.input_length = n_role_vocab - 1

        # each input is a fixed window of frame set, each word correspond to one role
        input_words = Input(
            shape=(self.input_length, ), dtype=tf.uint32,
            name='input_words')  # Switched dtype to tf specific (team1-change)
        input_roles = Input(
            shape=(self.input_length, ), dtype=tf.uint32,
            name='input_roles')  # Switched dtype to tf specific (team1-change)
        target_role = Input(
            shape=(1, ), dtype=tf.uint32,
            name='target_role')  # Switched dtype to tf specific (team1-change)

        # role based embedding layer
        embedding_layer = role_based_word_embedding(
            input_words, input_roles, n_word_vocab, n_role_vocab,
            glorot_uniform(), missing_word_id, self.input_length,
            n_factors_emb, True, using_dropout, dropout_rate)

        # fully connected layer, output shape is (batch_size, input_length, n_hidden)
        lin_proj = Dense(n_factors_emb,
                         activation='linear',
                         use_bias=False,
                         input_shape=(n_factors_emb, ),
                         name='lin_proj')(embedding_layer)

        non_lin = PReLU(alpha_initializer='ones', name='non_lin')(lin_proj)

        # fully connected layer, output shape is (batch_size, input_length, n_hidden)
        lin_proj2 = Dense(n_factors_emb,
                          activation='linear',
                          use_bias=False,
                          input_shape=(n_factors_emb, ),
                          name='lin_proj2')(non_lin)

        residual_0 = Add(name='residual_0')([embedding_layer, lin_proj2])

        # mean on input_length direction;
        # obtaining context embedding layer, shape is (batch_size, n_hidden)
        context_embedding = Lambda(lambda x: K.mean(x, axis=1),
                                   name='context_embedding',
                                   output_shape=(n_factors_emb, ))(residual_0)

        # hidden layer
        hidden_layer2 = target_word_hidden(context_embedding,
                                           target_role,
                                           n_word_vocab,
                                           n_role_vocab,
                                           glorot_uniform(),
                                           n_factors_cls,
                                           n_hidden,
                                           using_dropout=using_dropout,
                                           dropout_rate=dropout_rate)

        # softmax output layer
        output_layer = Dense(n_word_vocab,
                             activation='softmax',
                             input_shape=(n_factors_cls, ),
                             name='softmax_word_output')(hidden_layer2)

        self.model = Model(inputs=[input_words, input_roles, target_role],
                           outputs=[output_layer])

        self.model.compile(optimizer, loss, metrics)
コード例 #5
0
ファイル: evaluate_PDFF.py プロジェクト: mimrtl/DL_PDFFR2
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)
コード例 #6
0
ファイル: evaluate_PDFF.py プロジェクト: mimrtl/DL_PDFFR2
def mean_squared_error(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)
コード例 #7
0
ファイル: visutils.py プロジェクト: inkers/easyink
def gradcam(model,
            layer,
            img,
            class_idx,
            preprocess_func=None,
            preprocess_img=min_max_scale,
            show=False):
    x = np.expand_dims(image.img_to_array(img), axis=0)
    img = np.copy(img)
    class_idx = np.argmax(class_idx, axis=0) if type(
        class_idx) == list or type(class_idx) == np.ndarray else class_idx
    if preprocess_func is not None:
        x = preprocess_func(x)
    if preprocess_img is not None:
        img = preprocess_img(img)
    preds = model.predict(x)
    preds = np.argmax(preds, axis=1)[0]

    class_output = model.output[:, class_idx]
    last_conv_layer = model.get_layer(layer)
    layer_out_channels = last_conv_layer.output_shape[-1]

    grads = K.gradients(class_output, last_conv_layer.output)[0]
    pooled_grads = K.mean(grads, axis=(0, 1, 2))
    iterate = K.function([model.input],
                         [pooled_grads, last_conv_layer.output[0]])
    pooled_grads_value, conv_layer_output_value = iterate([x])
    for i in range(layer_out_channels):
        conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
    heatmap = np.mean(conv_layer_output_value, axis=-1)
    heatmap = np.maximum(heatmap, 0)
    heatmap /= np.max(heatmap)
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

    heatmap = heatmap / 255
    for i in range(len(heatmap)):
        for j in range(len(heatmap[0])):
            if heatmap[i][j][1] <= 0.01 and heatmap[i][j][2] <= 0.01:
                heatmap[i][j] = 0

    superimposed_img = 0.6 * img + 0.4 * heatmap
    for i in range(len(heatmap)):
        for j in range(len(heatmap[0])):
            if np.sum(heatmap[i][j]) == 0:
                superimposed_img[i][j] = img[i][j]

    superimposed_img = np.clip(
        superimposed_img,
        0,
        1,
    )
    if show:
        plt.imshow(img)
        plt.axis("off")
        plt.show()
        plt.imshow(heatmap)
        plt.axis("off")
        plt.show()
        plt.imshow(superimposed_img)
        plt.axis("off")
        plt.show()
    return img, heatmap, superimposed_img, preds
コード例 #8
0
    def __init__(self,
                 n_word_vocab=50001,
                 n_role_vocab=7,
                 n_factors_emb=300,
                 n_hidden=300,
                 word_vocabulary=None,
                 role_vocabulary=None,
                 unk_word_id=50000,
                 unk_role_id=7,
                 missing_word_id=50001,
                 using_dropout=False,
                 dropout_rate=0.3,
                 optimizer='adagrad',
                 loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'],
                 loss_weights=[1., 1.]):
        super(MTRFv4, self).__init__(n_word_vocab, n_role_vocab, n_factors_emb,
                                     n_hidden, word_vocabulary,
                                     role_vocabulary, unk_word_id, unk_role_id,
                                     missing_word_id, using_dropout,
                                     dropout_rate, optimizer, loss, metrics)

        # minus 1 here because one of the role is target role
        input_length = n_role_vocab - 1

        n_factors_cls = n_hidden

        # each input is a fixed window of frame set, each word correspond to one role
        input_words = Input(
            shape=(input_length, ), dtype=tf.uint32,
            name='input_words')  # Switched dtype to tf specific (team1-change)
        input_roles = Input(
            shape=(input_length, ), dtype=tf.uint32,
            name='input_roles')  # Switched dtype to tf specific (team1-change)
        target_word = Input(
            shape=(1, ), dtype=tf.uint32,
            name='target_word')  # Switched dtype to tf specific (team1-change)
        target_role = Input(
            shape=(1, ), dtype=tf.uint32,
            name='target_role')  # Switched dtype to tf specific (team1-change)

        # role based embedding layer
        embedding_layer = factored_embedding(input_words, input_roles,
                                             n_word_vocab, n_role_vocab,
                                             glorot_uniform(), missing_word_id,
                                             input_length, n_factors_emb,
                                             n_hidden, True, using_dropout,
                                             dropout_rate)

        # non-linear layer, using 1 to initialize
        non_linearity = PReLU(alpha_initializer='ones')(embedding_layer)

        # mean on input_length direction;
        # obtaining context embedding layer, shape is (batch_size, n_hidden)
        context_embedding = Lambda(lambda x: K.mean(x, axis=1),
                                   name='context_embedding',
                                   output_shape=(n_hidden, ))(non_linearity)

        # target word hidden layer
        tw_hidden = target_word_hidden(context_embedding,
                                       target_role,
                                       n_word_vocab,
                                       n_role_vocab,
                                       glorot_uniform(),
                                       n_hidden,
                                       n_hidden,
                                       using_dropout=using_dropout,
                                       dropout_rate=dropout_rate)

        # target role hidden layer
        tr_hidden = target_role_hidden(context_embedding,
                                       target_word,
                                       n_word_vocab,
                                       n_role_vocab,
                                       glorot_uniform(),
                                       n_hidden,
                                       n_hidden,
                                       using_dropout=using_dropout,
                                       dropout_rate=dropout_rate)

        # softmax output layer
        target_word_output = Dense(n_word_vocab,
                                   activation='softmax',
                                   input_shape=(n_hidden, ),
                                   name='softmax_word_output')(tw_hidden)

        # softmax output layer
        target_role_output = Dense(n_role_vocab,
                                   activation='softmax',
                                   input_shape=(n_hidden, ),
                                   name='softmax_role_output')(tr_hidden)

        self.model = Model(
            inputs=[input_words, input_roles, target_word, target_role],
            outputs=[target_word_output, target_role_output])

        self.model.compile(optimizer, loss, metrics, loss_weights)