def test_tf_data_feature_label_keys(self): """Tests the ability of a get_tf_data_datasets to have extra labels/key. Test is done here because TAP is off in specific dataset tests. """ features_data = data_provider.get_tf_data_dataset( dataset_name='scannet_scene', split_name='val', batch_size=1, preprocess_fn=None, is_training=True, num_readers=2, num_parallel_batches=2, shuffle_buffer_size=2) features = next(iter(features_data)) self.assertEqual( features['mesh/vertices/positions'].get_shape().as_list()[2], 3) self.assertEqual( features['mesh/vertices/normals'].get_shape().as_list()[2], 3) self.assertEqual( features['mesh/vertices/colors'].get_shape().as_list()[2], 4) self.assertEqual( features['mesh/faces/polygons'].get_shape().as_list()[2], 3) self.assertEqual( features['mesh/vertices/semantic_labels'].get_shape().as_list()[2], 1) self.assertEqual( features['mesh/vertices/instance_labels'].get_shape().as_list()[2], 1)
def test_get_tf_data_dataset_tfrecord(self): dataset = data_provider.get_tf_data_dataset( dataset_name='waymo_object_per_frame', split_name='val', batch_size=1, is_training=True, preprocess_fn=None, feature_keys=None, label_keys=None, num_readers=1, filenames_shuffle_buffer_size=2, num_epochs=0, read_block_length=1, shuffle_buffer_size=2, num_parallel_batches=1, num_prefetch_batches=1, dataset_format='tfrecord', ) tfrecord_features = next(iter(dataset)) self.assertAllEqual( tfrecord_features['cameras/front/extrinsics/R'].shape, [1, 3, 3])
def test_tf_data_feature_label_keys(self): """Tests the ability of a get_tf_data_datasets to have extra labels/key. Test is done here because TAP is off in specific dataset tests. """ features_data = data_provider.get_tf_data_dataset( dataset_name='waymo_object_per_frame', split_name='val', batch_size=1, preprocess_fn=None, is_training=True, num_readers=2, num_parallel_batches=2, shuffle_buffer_size=2) features = next(iter(features_data)) cameras = ['front', 'front_left', 'front_right', 'side_left', 'side_right'] lidars = ['top', 'front', 'side_left', 'side_right', 'rear'] for camera in cameras: self.assertAllEqual( features[('cameras/%s/extrinsics/t' % camera)].get_shape().as_list(), np.array([1, 3])) self.assertAllEqual( features[('cameras/%s/extrinsics/R' % camera)].get_shape().as_list(), np.array([1, 3, 3])) self.assertAllEqual( features[('cameras/%s/intrinsics/distortion' % camera)].get_shape().as_list(), np.array([1, 5])) self.assertAllEqual( features[('cameras/%s/intrinsics/K' % camera)].get_shape().as_list(), np.array([1, 3, 3])) self.assertAllEqual( features[('cameras/%s/image' % camera)].get_shape().as_list()[3], 3) for lidar in lidars: self.assertEqual( features[('lidars/%s/pointcloud/positions' % lidar)].get_shape().as_list()[2], 3) self.assertEqual( features[('lidars/%s/pointcloud/intensity' % lidar)].get_shape().as_list()[2], 1) self.assertEqual( features[('lidars/%s/pointcloud/elongation' % lidar)].get_shape().as_list()[2], 1) self.assertAllEqual( features[('lidars/%s/extrinsics/R' % lidar)].get_shape().as_list(), np.array([1, 3, 3])) self.assertAllEqual( features[('lidars/%s/extrinsics/t' % lidar)].get_shape().as_list(), np.array([1, 3])) self.assertEqual( features['lidars/%s/camera_projections/positions' % lidar].get_shape().as_list()[2], 2) self.assertEqual( features['lidars/%s/camera_projections/ids' % lidar].get_shape().as_list()[2], 1) self.assertEqual(features['objects/pose/R'].get_shape().as_list()[2], 3) self.assertEqual(features['objects/pose/R'].get_shape().as_list()[3], 3) self.assertEqual(features['objects/pose/t'].get_shape().as_list()[2], 3) self.assertEqual( features['objects/shape/dimension'].get_shape().as_list()[2], 3) self.assertLen(features['objects/category/label'].get_shape().as_list(), 2)