def _get_feature_label_keys(): """Extracts and returns the dataset feature and label keys.""" feature_spec = (scannet_specs.scene_feature_spec( with_annotations=True).get_serialized_info()) feature_dict = tfds.core.utils.flatten_nest_dict(feature_spec) feature_keys = [] label_keys = [] for key in sorted(feature_dict): if 'labels' in key: label_keys.append(key) else: feature_keys.append(key) return feature_keys, label_keys
def decode_fn(value): tensors = example_parser.decode_serialized_example( serialized_example=value, features=scannet_specs.scene_feature_spec(with_annotations=True)) tensor_dict = tfds.core.utils.flatten_nest_dict(tensors) return tensor_dict