コード例 #1
0
def postprocess(inputs, outputs, is_training, apply_nms, nms_score_threshold,
                nms_iou_threshold, nms_max_num_predicted_boxes,
                use_furthest_voxel_sampling, num_furthest_voxel_samples,
                sampler_score_vs_distance_coef):
    """Post-processor function."""
    if not is_training:

        # Squeeze voxel properties.
        for key in standard_fields.get_output_voxel_fields():
            if key in outputs and outputs[key] is not None:
                outputs[key] = tf.squeeze(outputs[key], axis=0)
        for key in standard_fields.get_output_point_fields():
            if key in outputs and outputs[key] is not None:
                outputs[key] = tf.squeeze(outputs[key], axis=0)
        for key in standard_fields.get_output_object_fields():
            if key in outputs and outputs[key] is not None:
                outputs[key] = tf.squeeze(outputs[key], axis=0)

        # Mask the valid voxels
        mask_valid_voxels(inputs=inputs, outputs=outputs)

        # NMS
        postprocessor.postprocess(
            outputs=outputs,
            score_thresh=nms_score_threshold,
            iou_thresh=nms_iou_threshold,
            max_output_size=nms_max_num_predicted_boxes,
            use_furthest_voxel_sampling=use_furthest_voxel_sampling,
            num_furthest_voxel_samples=num_furthest_voxel_samples,
            sampler_score_vs_distance_coef=sampler_score_vs_distance_coef,
            apply_nms=apply_nms)
コード例 #2
0
def get_batch_size_1_output_points(outputs, b):
    """Returns output dictionary containing tensors with batch size of 1.

  Note that this function only applies its example selection to the point
  tensors.

  Args:
    outputs: A dictionary of tf.Tensors with the network output.
    b: Example index in the batch.

  Returns:
    outputs_1:  A dictionary of tf.Tensors with batch size of one.
  """
    b_1_outputs = {}
    for field in standard_fields.get_output_point_fields():
        if field in outputs and outputs[field] is not None:
            b_1_outputs[field] = outputs[field][b]
    return b_1_outputs
コード例 #3
0
def apply_mask_to_output_point_tensors(outputs, valid_mask):
    """Applies mask to output point tensors."""
    for field in standard_fields.get_output_point_fields():
        if field in outputs and outputs[field] is not None:
            outputs[field] = tf.boolean_mask(outputs[field], valid_mask)
コード例 #4
0
def postprocess(inputs, outputs, is_training, num_furthest_voxel_samples,
                sampler_score_vs_distance_coef, embedding_similarity_strategy,
                embedding_similarity_threshold, score_threshold, apply_nms,
                nms_iou_threshold):
    """Post-processor function.

  Args:
    inputs: A dictionary containing input tensors.
    outputs: A dictionary containing predicted tensors.
    is_training: If during training stage or not.
    num_furthest_voxel_samples: Number of voxels to be sampled using furthest
      voxel sampling in the postprocessor.
    sampler_score_vs_distance_coef: The coefficient that balances the weight
      between furthest voxel sampling and highest score sampling in the
      postprocessor.
    embedding_similarity_strategy: Embedding similarity strategy.
    embedding_similarity_threshold: Similarity threshold used to decide if two
      point embedding vectors belong to the same instance.
    score_threshold: Instance score threshold used throughout postprocessing.
    apply_nms: If True, it will apply non-maximum suppression to the final
      predictions.
    nms_iou_threshold: Intersection over union threshold used in non-maximum
      suppression.
  """
    if not is_training:

        # Squeeze output voxel properties.
        for key in standard_fields.get_output_voxel_fields():
            if key in outputs and outputs[key] is not None:
                outputs[key] = tf.squeeze(outputs[key], axis=0)

        # Squeeze output point properties.
        for key in standard_fields.get_output_point_fields():
            if key in outputs and outputs[key] is not None:
                outputs[key] = tf.squeeze(outputs[key], axis=0)

        # Squeeze output object properties.
        for key in standard_fields.get_output_object_fields():
            if key in outputs and outputs[key] is not None:
                outputs[key] = tf.squeeze(outputs[key], axis=0)

        # Mask the valid voxels
        mask_valid_voxels(inputs=inputs, outputs=outputs)

        # Mask the valid points
        mask_valid_points(inputs=inputs, outputs=outputs)

        # NMS
        postprocessor.postprocess(
            outputs=outputs,
            num_furthest_voxel_samples=num_furthest_voxel_samples,
            sampler_score_vs_distance_coef=sampler_score_vs_distance_coef,
            embedding_similarity_strategy=embedding_similarity_strategy,
            embedding_similarity_threshold=embedding_similarity_threshold,
            apply_nms=apply_nms,
            nms_score_threshold=score_threshold,
            nms_iou_threshold=nms_iou_threshold)

        # Add instance segment point masks at eval time
        if standard_fields.InputDataFields.points_to_voxel_mapping in inputs:
            instance_segments_point_mask = (
                voxel_utils.sparse_voxel_grid_to_pointcloud(
                    voxel_features=tf.expand_dims(tf.transpose(
                        outputs[standard_fields.DetectionResultFields.
                                instance_segments_voxel_mask]),
                                                  axis=0),
                    segment_ids=inputs[standard_fields.InputDataFields.
                                       points_to_voxel_mapping],
                    num_valid_voxels=inputs[
                        standard_fields.InputDataFields.num_valid_voxels],
                    num_valid_points=inputs[
                        standard_fields.InputDataFields.num_valid_points]))
            outputs[standard_fields.DetectionResultFields.
                    instance_segments_point_mask] = tf.transpose(
                        tf.squeeze(instance_segments_point_mask, axis=0))