import numpy as np from tfHelper import tfHelper import data tfHelper.log_level_decrease() # tfHelper.numpy_show_entire_array(28) # np.set_printoptions(linewidth=200) print ("Load data ...") _, X_id, label = data.load_data_predict() X_pred = tfHelper.get_dataset_with_one_folder('classed/.None', 'L') X_pred = data.normalize(X_pred) model = tfHelper.load_model("model_img") # model = tfHelper.load_model("model") ######################### Predict ######################### predictions = model.predict(X_pred) # print(predictions) # exit (0) # All features with open("output_img_detailed", "w+") as file: # Head for line in label[:-1]: file.write(line + ",") else:
from Test import Test from Train import Train from tfHelper import tfHelper import model import os te = Test() tr = Train() if os.path.exists("model.h5"): model = tfHelper.load_model("model") else: model = model.model() while True: te.test(model) model = tr.train(model)