コード例 #1
0
    def __create_decoder(self, encoder_results, lastGlobalNet, output_channels):
        layer_specs = [
            (self.ngf * 8, 0.5),   # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8]
            (self.ngf * 8, 0.5),   # decoder_7: [batch, 2, 2, ngf * 8 ] => [batch, 4, 4, ngf * 8]
            (self.ngf * 8, 0.5),   # decoder_6: [batch, 4, 4, ngf * 8 ] => [batch, 8, 8, ngf * 8] #Dropout was 0.5 until here
            (self.ngf * 8, 0.0),   # decoder_5: [batch, 8, 8, ngf * 8 ] => [batch, 16, 16, ngf * 8]
            (self.ngf * 4, 0.0),   # decoder_4: [batch, 16, 16, ngf * 8 ] => [batch, 32, 32, ngf * 4]
            (self.ngf * 2, 0.0),   # decoder_3: [batch, 32, 32, ngf * 4] => [batch, 64, 64, ngf * 2]
            (self.ngf, 0.0),       # decoder_2: [batch, 64, 64, ngf * 2] => [batch, 128, 128, ngf]
        ]
        decoder_results = []

        num_encoder_layers = len(encoder_results)
        for decoder_layer, (out_channels, dropout) in enumerate(layer_specs):
            skip_layer = num_encoder_layers - decoder_layer - 1
            with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
                if decoder_layer == 0:
                    # first decoder layer doesn't have skip connections
                    # since it is directly connected to the skip_layer
                    input = encoder_results[-1]
                else:
                    input = tf.concat([decoder_results[-1], encoder_results[skip_layer]], axis=3)

                rectified = tfHelpers.lrelu(input, 0.2)
                # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]
                output = tfHelpers.deconv(rectified, out_channels)
                output, mean, variance = tfHelpers.instancenorm(output)
                output, lastGlobalNet = self._addSecondaryNetBlock(output, mean, lastGlobalNet, out_channels, out_channels, num_encoder_layers + len(decoder_results))
                if dropout > 0.0:
                    output = tf.nn.dropout(output, keep_prob=1 - dropout)

                decoder_results.append(output)

        # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, output_channels]
        with tf.variable_scope("decoder_1"):
            input = tf.concat([decoder_results[-1], encoder_results[0]], axis=3)
            rectified = tfHelpers.lrelu(input, 0.2)
            deconved = tfHelpers.deconv(rectified, output_channels)
            #should we normalize it ?
            deconved, lastGlobalNet = self._addSecondaryNetBlock(deconved, None, lastGlobalNet, output_channels, output_channels, num_encoder_layers + len(decoder_results), True)
            #output = tf.tanh(deconved)
            decoder_results.append(deconved)

        return decoder_results[-1], lastGlobalNet
コード例 #2
0
    def __create_encoder(self, input):
        layers = []
        #input shape is [batch * nbRenderings, height, width, 3]
        if self.useCoordConv:
            coords = helpers.generateCoords(tf.shape(input))
            input = tf.concat([input, coords], axis = -1)

        _, lastGlobalNet = self._addSecondaryNetBlock(input, None, None, None ,self.ngf * 2, 1)
        with tf.variable_scope("encoder_1"):
            output = tfHelpers.conv(input, self.ngf, stride=2, useXavier=False)
            layers.append(output)
        #Default ngf is 64
        layer_specs = [
            self.ngf * 2, # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2]
            self.ngf * 4, # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4]
            self.ngf * 8, # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8]
            self.ngf * 8, # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8]
            self.ngf * 8, # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8]
            self.ngf * 8, # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8]
        ]
        for layerCount, out_channels in enumerate(layer_specs):
            with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
                rectified = tfHelpers.lrelu(layers[-1], 0.2)
                # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
                convolved = tfHelpers.conv(rectified, out_channels, stride=2, useXavier=False)
                #here mean and variance will be [batch, 1, 1, out_channels]
                outputs, mean, variance = tfHelpers.instancenorm(convolved)
                layers_specs_GlobalNet = layerCount + 1
                if layerCount + 1 >= len(layer_specs) - 1:
                    layers_specs_GlobalNet = layerCount
                outputs, lastGlobalNet = self._addSecondaryNetBlock(outputs, mean, lastGlobalNet, out_channels, layer_specs[layers_specs_GlobalNet], len(layers) + 1)

                layers.append(outputs)

        with tf.variable_scope("encoder_8"):
            rectified = tfHelpers.lrelu(layers[-1], 0.2)
             # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
            convolved = tfHelpers.conv(rectified, self.ngf * 8, stride=2, useXavier=False)
            convolved, lastGlobalNet = self._addSecondaryNetBlock(convolved, None, lastGlobalNet, self.ngf * 8, self.ngf * 8, len(layers) + 1, keep_dims=True)
            layers.append(convolved)
        return layers, lastGlobalNet
    def __createLastConvs(self,
                          input,
                          secondaryNet_input,
                          output_channels,
                          last_channels,
                          reuse_bool=True):
        input, lastGlobalNet = self._addSecondaryNetBlock(
            input, None, secondaryNet_input, last_channels, output_channels[0],
            0, True)
        #if self.useCoordConv:
        #    coords = helpers.generateCoords(tf.shape(input))
        #    input = tf.concat([input, coords], axis = -1)
        layers = [input]
        for layerCount, chanCount in enumerate(output_channels[:-1]):
            with tf.variable_scope("final_conv_" + str(layerCount)):
                convolved = tfHelpers.conv(layers[-1],
                                           chanCount,
                                           stride=1,
                                           filterSize=3,
                                           initScale=0.02,
                                           useXavier=False,
                                           paddingSize=1)
                lastLayerResult, mean, variance = tfHelpers.instancenorm(
                    convolved)

                lastLayerResult, lastGlobalNet = self._addSecondaryNetBlock(
                    lastLayerResult, mean, lastGlobalNet, chanCount,
                    output_channels[layerCount + 1], len(layers))
                rectified = tfHelpers.lrelu(lastLayerResult, 0.2)
                layers.append(rectified)
        with tf.variable_scope("final_conv_last"):

            convolved = tfHelpers.conv(layers[-1],
                                       output_channels[-1],
                                       stride=1,
                                       filterSize=3,
                                       initScale=0.02,
                                       useXavier=True,
                                       paddingSize=1,
                                       useBias=True)
            #convolved, _ = self._addSecondaryNetBlock(convolved, None, lastGlobalNet, output_channels[-1], output_channels[-1], len(layers), True)

            outputs = tf.tanh(convolved)
            #outputs should be [batch, W, H, C]
            return outputs
    def create_generator(self,
                         generator_inputs,
                         generator_outputs_channels,
                         reuse_bool=True):
        with tf.variable_scope("generator", reuse=reuse_bool) as scope:
            #Print the shape to check we are inputting a tensor with a reasonable shape
            print("generator_inputs :" + str(generator_inputs.get_shape()))
            print("generator_outputs_channels :" +
                  str(generator_outputs_channels))
            layers = []
            #Input here should be [batch, 256,256,3]
            inputMean, inputVariance = tf.nn.moments(generator_inputs,
                                                     axes=[1, 2],
                                                     keep_dims=False)
            globalNetworkInput = inputMean
            globalNetworkOutputs = []
            with tf.variable_scope("globalNetwork_fc_1"):
                globalNetwork_fc_1 = tfHelpers.fullyConnected(
                    globalNetworkInput, self.ngf * 2, True,
                    "globalNetworkLayer" + str(len(globalNetworkOutputs) + 1))
                globalNetworkOutputs.append(tf.nn.selu(globalNetwork_fc_1))

            #encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf]
            with tf.variable_scope("encoder_1"):
                #Convolution with stride 2 and kernel size 4x4.
                output = tfHelpers.conv(generator_inputs, self.ngf, stride=2)
                layers.append(output)
            #Default ngf is 64
            layer_specs = [
                self.ngf *
                2,  # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2]
                self.ngf *
                4,  # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4]
                self.ngf *
                8,  # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8]
                self.ngf *
                8,  # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8]
                self.ngf *
                8,  # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8]
                self.ngf *
                8,  # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8]
                #self.ngf * 8, # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8]
            ]

            for layerCount, out_channels in enumerate(layer_specs):
                with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
                    #We use a leaky relu instead of a relu to let a bit more expressivity to the network.
                    rectified = tfHelpers.lrelu(layers[-1], 0.2)
                    # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
                    convolved = tfHelpers.conv(rectified,
                                               out_channels,
                                               stride=2)
                    #here mean and variance will be [batch, 1, 1, out_channels] and we run an instance normalization
                    outputs, mean, variance = tfHelpers.instancenorm(convolved)

                    #Get the last value in the global feature secondary network and transform it to be added to the current Unet layer output.
                    outputs = outputs + tfHelpers.GlobalToGenerator(
                        globalNetworkOutputs[-1], out_channels)
                    with tf.variable_scope("globalNetwork_fc_%d" %
                                           (len(globalNetworkOutputs) + 1)):
                        #Prepare the input to the next global feature secondary network step and run it.
                        nextGlobalInput = tf.concat([
                            tf.expand_dims(tf.expand_dims(
                                globalNetworkOutputs[-1], axis=1),
                                           axis=1), mean
                        ],
                                                    axis=-1)
                        globalNetwork_fc = ""
                        if layerCount + 1 < len(layer_specs) - 1:
                            globalNetwork_fc = tfHelpers.fullyConnected(
                                nextGlobalInput, layer_specs[layerCount + 1],
                                True, "globalNetworkLayer" +
                                str(len(globalNetworkOutputs) + 1))
                        else:
                            globalNetwork_fc = tfHelpers.fullyConnected(
                                nextGlobalInput, layer_specs[layerCount], True,
                                "globalNetworkLayer" +
                                str(len(globalNetworkOutputs) + 1))
                        #We use selu as we are in a fully connected network and it has auto normalization properties.
                        globalNetworkOutputs.append(
                            tf.nn.selu(globalNetwork_fc))
                    layers.append(outputs)

            with tf.variable_scope("encoder_8"):
                #The last encoder is mostly similar to previous layers except that we don't normalize the output.
                rectified = tfHelpers.lrelu(layers[-1], 0.2)
                # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
                convolvedNoGlobal = tfHelpers.conv(rectified,
                                                   self.ngf * 8,
                                                   stride=2)
                convolved = convolvedNoGlobal + tfHelpers.GlobalToGenerator(
                    globalNetworkOutputs[-1], self.ngf * 8)

                with tf.variable_scope("globalNetwork_fc_%d" %
                                       (len(globalNetworkOutputs) + 1)):
                    mean, variance = tf.nn.moments(convolvedNoGlobal,
                                                   axes=[1, 2],
                                                   keep_dims=True)
                    nextGlobalInput = tf.concat([
                        tf.expand_dims(tf.expand_dims(globalNetworkOutputs[-1],
                                                      axis=1),
                                       axis=1), mean
                    ],
                                                axis=-1)
                    globalNetwork_fc = tfHelpers.fullyConnected(
                        nextGlobalInput, self.ngf * 8, True,
                        "globalNetworkLayer" +
                        str(len(globalNetworkOutputs) + 1))
                    globalNetworkOutputs.append(tf.nn.selu(globalNetwork_fc))

                layers.append(convolved)
            #default nfg = 64
            layer_specs = [
                (
                    self.ngf * 8, 0.5
                ),  # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2]
                (
                    self.ngf * 8, 0.5
                ),  # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2]
                (
                    self.ngf * 8, 0.5
                ),  # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2]
                (
                    self.ngf * 8, 0.0
                ),  # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2]
                (
                    self.ngf * 4, 0.0
                ),  # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2]
                (
                    self.ngf * 2, 0.0
                ),  # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2]
                (
                    self.ngf, 0.0
                ),  # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2]
            ]
            #Start the decoder here
            num_encoder_layers = len(layers)
            for decoder_layer, (out_channels,
                                dropout) in enumerate(layer_specs):
                skip_layer = num_encoder_layers - decoder_layer - 1
                #Evaluate which layer from the encoder has to be contatenated for the skip connection
                with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
                    if decoder_layer == 0:
                        # first decoder layer doesn't have skip connections
                        # since it is directly connected to the skip_layer
                        input = layers[-1]
                    else:
                        input = tf.concat([layers[-1], layers[skip_layer]],
                                          axis=3)

                    #Leaky relu some more (same reason as in the encoder)
                    rectified = tfHelpers.lrelu(input, 0.2)
                    # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]

                    #The deconvolution has stride 1 and shape 4x4. Theorically, it should be shape 3x3 to avoid any effects on the image borders, but it doesn't seem to have such a strong effect.
                    output = tfHelpers.deconv(rectified, out_channels)

                    #Instance norm and global feature secondary network similar to the decoder.
                    output, mean, variance = tfHelpers.instancenorm(output)
                    output = output + tfHelpers.GlobalToGenerator(
                        globalNetworkOutputs[-1], out_channels)
                    with tf.variable_scope("globalNetwork_fc_%d" %
                                           (len(globalNetworkOutputs) + 1)):
                        nextGlobalInput = tf.concat([
                            tf.expand_dims(tf.expand_dims(
                                globalNetworkOutputs[-1], axis=1),
                                           axis=1), mean
                        ],
                                                    axis=-1)
                        globalNetwork_fc = tfHelpers.fullyConnected(
                            nextGlobalInput, out_channels, True,
                            "globalNetworkLayer" +
                            str(len(globalNetworkOutputs) + 1))
                        globalNetworkOutputs.append(
                            tf.nn.selu(globalNetwork_fc))
                    if dropout > 0.0:
                        #We use dropout as described in the pix2pix paper.
                        output = tf.nn.dropout(output, keep_prob=1 - dropout)

                    layers.append(output)

            # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels]
            with tf.variable_scope("decoder_1"):
                input = tf.concat([layers[-1], layers[0]], axis=3)
                rectified = tfHelpers.lrelu(input, 0.2)
                output = tfHelpers.deconv(rectified,
                                          generator_outputs_channels)
                lastGlobalNet = tfHelpers.GlobalToGenerator(
                    globalNetworkOutputs[-1], generator_outputs_channels)
                output = output + lastGlobalNet
                #output = tf.tanh(output)
                layers.append(output)

            return layers[-1], lastGlobalNet
コード例 #5
0
    def create_generator(self,
                         generator_inputs,
                         generator_outputs_channels,
                         materialEncoded,
                         reuse_bool=True):
        with tf.variable_scope("generator", reuse=reuse_bool) as scope:
            layers = []
            #Input here should be [batch, 256,256,3]
            inputMean, inputVariance = tf.nn.moments(generator_inputs,
                                                     axes=[1, 2],
                                                     keep_dims=False)
            globalNetworkInput = inputMean
            globalNetworkOutputs = []

            with tf.variable_scope("globalNetwork_fc_1"):
                globalNetwork_fc_1 = tfHelpers.fullyConnected(
                    globalNetworkInput, self.ngf * 2, True,
                    "globalNetworkLayer" + str(len(globalNetworkOutputs) + 1))
                globalNetworkOutputs.append(tf.nn.selu(globalNetwork_fc_1))

            #encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf]
            with tf.variable_scope("encoder_1"):
                output = tfHelpers.conv(generator_inputs, self.ngf, stride=2)
                layers.append(output)
            #Default ngf is 64
            layer_specs = [
                self.ngf *
                2,  # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2]
                self.ngf *
                4,  # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4]
                self.ngf *
                8,  # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8]
                self.ngf *
                8,  # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8]
                self.ngf *
                8,  # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8]
                self.ngf *
                8,  # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8]
                #self.ngf * 8, # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8]
            ]

            for layerCount, out_channels in enumerate(layer_specs):
                with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
                    rectified = tfHelpers.lrelu(layers[-1], 0.2)
                    # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
                    convolved = tfHelpers.conv(rectified,
                                               out_channels,
                                               stride=2)
                    #here mean and variance will be [batch, 1, 1, out_channels]
                    outputs, mean, variance = tfHelpers.instancenorm(convolved)

                    outputs = outputs + self.GlobalToGenerator(
                        globalNetworkOutputs[-1], out_channels)
                    with tf.variable_scope("globalNetwork_fc_%d" %
                                           (len(globalNetworkOutputs) + 1)):
                        nextGlobalInput = tf.concat([
                            tf.expand_dims(tf.expand_dims(
                                globalNetworkOutputs[-1], axis=1),
                                           axis=1), mean
                        ],
                                                    axis=-1)
                        globalNetwork_fc = ""
                        if layerCount + 1 < len(layer_specs) - 1:
                            globalNetwork_fc = tfHelpers.fullyConnected(
                                nextGlobalInput, layer_specs[layerCount + 1],
                                True, "globalNetworkLayer" +
                                str(len(globalNetworkOutputs) + 1))
                        else:
                            globalNetwork_fc = tfHelpers.fullyConnected(
                                nextGlobalInput, layer_specs[layerCount], True,
                                "globalNetworkLayer" +
                                str(len(globalNetworkOutputs) + 1))

                        globalNetworkOutputs.append(
                            tf.nn.selu(globalNetwork_fc))
                    layers.append(outputs)

            with tf.variable_scope("encoder_8"):
                rectified = tfHelpers.lrelu(layers[-1], 0.2)
                # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
                convolved = tfHelpers.conv(rectified, self.ngf * 8, stride=2)
                convolved = convolved + self.GlobalToGenerator(
                    globalNetworkOutputs[-1], self.ngf * 8)

                with tf.variable_scope("globalNetwork_fc_%d" %
                                       (len(globalNetworkOutputs) + 1)):
                    mean, variance = tf.nn.moments(convolved,
                                                   axes=[1, 2],
                                                   keep_dims=True)
                    nextGlobalInput = tf.concat([
                        tf.expand_dims(tf.expand_dims(globalNetworkOutputs[-1],
                                                      axis=1),
                                       axis=1), mean
                    ],
                                                axis=-1)
                    globalNetwork_fc = tfHelpers.fullyConnected(
                        nextGlobalInput, self.ngf * 8, True,
                        "globalNetworkLayer" +
                        str(len(globalNetworkOutputs) + 1))
                    globalNetworkOutputs.append(tf.nn.selu(globalNetwork_fc))

                layers.append(convolved)
            #default nfg = 64
            layer_specs = [
                (
                    self.ngf * 8, 0.5
                ),  # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2]
                (
                    self.ngf * 8, 0.5
                ),  # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2]
                (
                    self.ngf * 8, 0.5
                ),  # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2]
                (
                    self.ngf * 8, 0.0
                ),  # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2]
                (
                    self.ngf * 4, 0.0
                ),  # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2]
                (
                    self.ngf * 2, 0.0
                ),  # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2]
                (
                    self.ngf, 0.0
                ),  # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2]
            ]

            num_encoder_layers = len(layers)
            for decoder_layer, (out_channels,
                                dropout) in enumerate(layer_specs):
                skip_layer = num_encoder_layers - decoder_layer - 1
                with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
                    if decoder_layer == 0:
                        # first decoder layer doesn't have skip connections
                        # since it is directly connected to the skip_layer
                        input = layers[-1]
                    else:
                        input = tf.concat([layers[-1], layers[skip_layer]],
                                          axis=3)

                    rectified = tfHelpers.lrelu(input, 0.2)
                    # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]
                    output = tfHelpers.deconv(rectified, out_channels)
                    output, mean, variance = tfHelpers.instancenorm(output)
                    output = output + self.GlobalToGenerator(
                        globalNetworkOutputs[-1], out_channels)
                    with tf.variable_scope("globalNetwork_fc_%d" %
                                           (len(globalNetworkOutputs) + 1)):
                        nextGlobalInput = tf.concat([
                            tf.expand_dims(tf.expand_dims(
                                globalNetworkOutputs[-1], axis=1),
                                           axis=1), mean
                        ],
                                                    axis=-1)
                        globalNetwork_fc = tfHelpers.fullyConnected(
                            nextGlobalInput, out_channels, True,
                            "globalNetworkLayer" +
                            str(len(globalNetworkOutputs) + 1))
                        globalNetworkOutputs.append(
                            tf.nn.selu(globalNetwork_fc))
                    if dropout > 0.0:
                        output = tf.nn.dropout(output, rate=dropout)

                    layers.append(output)

            # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels]
            with tf.variable_scope("decoder_1"):
                input = tf.concat([layers[-1], layers[0]], axis=3)
                rectified = tfHelpers.lrelu(input, 0.2)
                output = tfHelpers.deconv(rectified,
                                          generator_outputs_channels)
                lastGlobalNet = self.GlobalToGenerator(
                    globalNetworkOutputs[-1], generator_outputs_channels)
                output = output + lastGlobalNet
                output = tf.tanh(output)
                layers.append(output)

            return layers[-1], lastGlobalNet