def __init__(self, fps: int, width: int, height: int, codec: str, no_background: bool, background_blur: int, background_keep_aspect: bool, use_foreground: bool, hologram: bool, tiling: bool, background_image: str, foreground_image: str, foreground_mask_image: str, webcam_path: str, v4l2loopback_path: str, use_akvcam: bool) -> None: self.no_background = no_background self.use_foreground = use_foreground self.hologram = hologram self.tiling = tiling self.background_blur = background_blur self.background_keep_aspect = background_keep_aspect self.background_image = background_image self.foreground_image = foreground_image self.foreground_mask_image = foreground_mask_image self.real_cam = RealCam(webcam_path, width, height, fps, codec) # In case the real webcam does not support the requested mode. self.width = self.real_cam.get_frame_width() self.height = self.real_cam.get_frame_height() self.use_akvcam = use_akvcam if not use_akvcam: self.fake_cam = pyfakewebcam.FakeWebcam(v4l2loopback_path, self.width, self.height) else: self.fake_cam = AkvCameraWriter(v4l2loopback_path, self.width, self.height) self.foreground_mask = None self.inverted_foreground_mask = None self.images: Dict[str, Any] = {} self.image_lock = asyncio.Lock() self.bodypix_model = load_model( download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16))
def load_bodypix_model(self) -> BodyPixModelWrapper: LOGGER.info('loading bodypix model: %s', self.model_path) bodypix_model = load_model( download_model(self.model_path), internal_resolution=self.internal_resolution) LOGGER.info('bodypix internal resolution: %s', bodypix_model.internal_resolution) return bodypix_model
def __init__(self): super().__init__('bodypix') self.pubMask = self.create_publisher(Image, "user/body_mask", 10) self.colMask = self.create_publisher(Image, "user/colored_body_mask", 10) self.subImg = self.create_subscription(Image, "camera/image", self.imageCallback, 10) self.bodypix_model = load_model( download_model(BodyPixModelPaths.MOBILENET_FLOAT_100_STRIDE_16))
import cv2 import numpy as np import tensorflow as tf from tf_bodypix.api import download_model, load_model, BodyPixModelPaths if len(sys.argv) > 1: file = sys.argv[1] else: file = "images/persons.jpg" img = cv2.imread(file) print(type(img)) print(img.shape) bodypix_model = load_model( download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16)) # load image file & display it image = tf.keras.preprocessing.image.load_img(file) #image.show() # PIL Image image_array = tf.keras.preprocessing.image.img_to_array(image) print(type(image_array)) image = np.array(image_array, dtype=np.uint8) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) cv2.imshow('image', image) result = bodypix_model.predict_single(image_array) mask = result.get_mask(threshold=0.75) #tf.keras.preprocessing.image.save_img('out/bodypix-mask.jpg',mask)
def __init__(self, model=BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16) -> None: self.bodypix_model = load_model(download_model(model))
def __init__(self): self.bodypix_model = load_model( download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16)) self.background = None
def __init__(self): self.scale_percent = 30 self.bodypix_model = load_model( download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16))