def _make_tf_train_config(self): self.train_iters = self.tf_data_dicts['train'][ 'sample_cnt'] // self.config['batch_size']['train'] total_steps = self.config['epochs'] * self.train_iters src_size = self.config['input_size'] input_size = (src_size['height'], src_size['width']) base_config_path, remake_config_fn = determine_tf_config( self.model_configuration) tf_config = load_sample_config(base_config_path) weights_dir = osp.join(sly.TaskPaths.MODEL_DIR, "model_weights") if (not sly.fs.dir_exists(weights_dir) ) or sly.fs.dir_empty(weights_dir): checkpoint = None logger.info('Weights will not be inited.') else: checkpoint = osp.join(sly.TaskPaths.MODEL_DIR, 'model_weights', 'model.ckpt') logger.info('Weights will be loaded from previous train.') self.tf_config = remake_config_fn( tf_config, 'SUPERVISELY_FORMAT', total_steps, max(self.class_title_to_idx.values()), input_size, self.config['batch_size']['train'], self.config['lr'], checkpoint) logger.info(self.tf_config) logger.info('Model config created.')
def _make_tf_train_config(self): self.train_iters = self.tf_data_dicts['train'][ 'sample_cnt'] // self.config['batch_size']['train'] total_steps = self.config['epochs'] * self.train_iters src_size = self.config['input_size'] input_size_wh = (src_size['width'], src_size['height']) tf_config = load_sample_config(self.base_mask_config_path) if self.helper.model_dir_is_empty(): checkpoint = None logger.info('Weights will not be inited.') else: checkpoint = osp.join(self.helper.paths.model_dir, 'model_weights', 'model.ckpt') logger.info('Weights will be loaded from previous train.') self.tf_config = remake_mask_rcnn_config( tf_config, 'SUPERVISELY_FORMAT', total_steps, len(self.out_classes), input_size_wh, self.config['batch_size']['train'], self.config['lr'], checkpoint) logger.info('Model config created.')