コード例 #1
0
ファイル: py_func.py プロジェクト: esemble/ml
def getE(feat, featParams, nnParams, logFile="log"):
    tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
    L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)

    with tf.Session() as sess:
        saver = tf.train.Saver(
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, "./" + logFile + "/model.ckpt")

        feedDict = {tf_feat: scaleFeat(featParams, feat)}

        engy = sess.run(L3, feed_dict=feedDict)

    return engy
コード例 #2
0
ファイル: py_func.py プロジェクト: esemble/ml
def trainEL_getError(featSets, engySets, featParams, nnParams, logFile="log"):
    AdFeatTrain, AdFeatValid, AdFeatTest, _, __, ___ = featSets
    AdEngyTrain, AdEngyValid, AdEngyTest, _, __, ___ = engySets

    tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
    tf_engy = tf.placeholder(tf.float32, (None))
    tf_LR = tf.placeholder(tf.float32)

    L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)

    engyLoss = tf.reduce_mean((L3 - tf_engy)**2)

    with tf.Session() as sess:
        saver = tf.train.Saver(
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, "./" + logFile + "/model.ckpt")

        AdTrainDict = {
            tf_feat: scaleFeat(featParams, AdFeatTrain),
            tf_engy: AdEngyTrain,
            tf_LR: nnParams['learningRate']
        }
        AdTestDict = {
            tf_feat: scaleFeat(featParams, AdFeatTest),
            tf_engy: AdEngyTest,
            tf_LR: nnParams['learningRate']
        }
        AdValidDict = {
            tf_feat: scaleFeat(featParams, AdFeatValid),
            tf_engy: AdEngyValid,
            tf_LR: nnParams['learningRate']
        }

        eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
        veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
        teLoss = sess.run(engyLoss, feed_dict=AdValidDict)

        print("Training set RMSE: {:10.4f} eV".format(eLoss**0.5))
        print("Validation set RMSE: {:10.4f} eV".format(veLoss**0.5))
        print("Testing set RMSE: {:10.4} eV".format(teLoss**0.5))
コード例 #3
0
import py_util as pyu
import py_func as pyf
import numpy as np
import tensorflow as tf
import tf_func as tff
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

nnParams = pyu.loadNN("log/nnParams.npz")
featParams = pyu.loadFeat("log/featParams.npz")

tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)
Router = 8

atomList, atomType, R_surf = pyu.loadXYZ("surface_cu.xyz")
atomList, atomType, R_Cu = pyu.loadXYZ("cu_np.xyz")

Ei = np.zeros(len(R_surf))
Emask = np.zeros(len(R_surf))
with tf.Session() as sess:
    saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, "./log/model.ckpt")

    for i in range(len(R_surf)):
        # for Rs in R_surf[:10]:
        Rl = R_surf[i] - R_Cu
        dl = np.sqrt(np.sum(Rl**2, axis=-1))

        dl[dl > Router] = 0
コード例 #4
0
def trainE(AdFeat,
           AdEngy,
           featParams,
           nnParams,
           save=False,
           load=False,
           logFile="log"):
    AdFeatTrain, AdFeatTest, AdEngyTrain, AdEngyTest = train_test_split(
        AdFeat, AdEngy, test_size=0.1)

    tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
    tf_engy = tf.placeholder(tf.float32, (None))
    #    tf_labels = tf.placeholder(tf.float32, (None))
    tf_LR = tf.placeholder(tf.float32)

    L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)
    #    L4 = tff.getAd(tf_feat, featParams['nFeat'], nnParams, tf_labels)

    engyLoss = tf.reduce_mean((L3 - tf_engy)**2)

    with tf.variable_scope("optimizers", reuse=tf.AUTO_REUSE):
        optimizer3 = tf.train.AdamOptimizer(tf_LR).minimize(engyLoss)

    with tf.Session() as sess:
        saver = tf.train.Saver(
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        sess.run(tf.global_variables_initializer())

        if load:
            saver.restore(sess, "./" + logFile + "/model.ckpt")
        else:
            featParams['featA'], featParams['featB'] = getFeatAB(AdFeatTrain)

        AdTrainDict = {
            tf_feat: scaleFeat(featParams, AdFeatTrain),
            tf_engy: AdEngyTrain,
            tf_LR: nnParams['learningRate']
        }
        AdTestDict = {
            tf_feat: scaleFeat(featParams, AdFeatTest),
            tf_engy: AdEngyTest,
            tf_LR: nnParams['learningRate']
        }

        for epoch in range(nnParams['nEpoch']):
            sess.run(optimizer3, feed_dict=AdTrainDict)
            if epoch % 200 == 0:
                eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
                veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
                print(epoch, eLoss)
                print(epoch, veLoss)
                print(" ")

        eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
        veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
        print(epoch, eLoss)
        print(epoch, veLoss)
        print(" ")

        if save:
            np.savez(logFile + "/featParams", **featParams)
            np.savez(logFile + "/nnParams", **nnParams)
            savePath = saver.save(sess, "./" + logFile + "/model.ckpt")
            print("Model saved:", savePath)
コード例 #5
0
def trainEL_validation(featSets,
                       engySets,
                       featParams,
                       nnParams,
                       save=False,
                       load=False,
                       logFile="log"):

    AdFeatTrain, AdFeatValid, AdFeatTest, DeFeatTrain, DeFeatValid, DeFeatTest = featSets
    AdEngyTrain, AdEngyValid, AdEngyTest, DeLabelTrain, DeLabelValid, DeLabelTest = engySets

    print("Adsorption - Train:Validation:Test = {}:{}:{}".format(
        len(AdEngyTrain), len(AdEngyValid), len(AdEngyTest)))
    print("Desorption - Train:Validation:Test = {}:{}:{}".format(
        len(DeLabelTrain), len(DeLabelValid), len(DeLabelTest)))

    RMSE_train = np.zeros(int(np.ceil(nnParams['nEpoch'] / 20)))
    RMSE_valid = np.zeros(int(np.ceil(nnParams['nEpoch'] / 20)))

    tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
    tf_engy = tf.placeholder(tf.float32, (None))
    tf_labels = tf.placeholder(tf.float32, (None))
    tf_LR = tf.placeholder(tf.float32)

    L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)
    L4 = tff.getAd(tf_feat, featParams['nFeat'], nnParams)

    engyLoss = tf.reduce_mean((L3 - tf_engy)**2)
    logitLoss = tf.reduce_mean((L4 - tf_labels)**2)

    with tf.variable_scope("optimizers", reuse=tf.AUTO_REUSE):
        optimizer3 = tf.train.AdamOptimizer(tf_LR).minimize(engyLoss)
        optimizer4 = tf.train.AdamOptimizer(tf_LR).minimize(logitLoss)

    with tf.Session() as sess:
        saver = tf.train.Saver(
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        sess.run(tf.global_variables_initializer())

        if load:
            saver.restore(sess, "./" + logFile + "/model.ckpt")
        else:
            featParams['featA'], featParams['featB'] = getFeatAB(AdFeatTrain)
            savePath = saver.save(sess, "./" + logFile + "/model.ckpt")
            print("Initial model saved:", savePath)

        AdTrainDict = {
            tf_feat: scaleFeat(featParams, AdFeatTrain),
            tf_engy: AdEngyTrain,
            tf_LR: nnParams['learningRate']
        }
        AdTestDict = {
            tf_feat: scaleFeat(featParams, AdFeatTest),
            tf_engy: AdEngyTest,
            tf_LR: nnParams['learningRate']
        }
        AdValidDict = {
            tf_feat: scaleFeat(featParams, AdFeatValid),
            tf_engy: AdEngyValid,
            tf_LR: nnParams['learningRate']
        }

        DeTrainDict = {
            tf_feat: scaleFeat(featParams, DeFeatTrain),
            tf_labels: DeLabelTrain,
            tf_LR: nnParams['learningRate']
        }
        DeTestDict = {
            tf_feat: scaleFeat(featParams, DeFeatTest),
            tf_labels: DeLabelTest,
            tf_LR: nnParams['learningRate']
        }
        DeValidDict = {
            tf_feat: scaleFeat(featParams, DeFeatValid),
            tf_labels: DeLabelValid,
            tf_LR: nnParams['learningRate']
        }

        for epoch in range(nnParams['nEpoch']):
            sess.run(optimizer3, feed_dict=AdTrainDict)
            sess.run(optimizer4, feed_dict=DeTrainDict)
            if epoch % 20 == 0:
                eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
                l4 = sess.run(L4, feed_dict=DeTrainDict)
                l4 = np.sum(np.array(l4 > 0.5, dtype=int) != DeLabelTrain
                            ) / len(DeLabelTrain)

                veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
                vl4 = sess.run(L4, feed_dict=DeTestDict)
                vl4 = np.sum(np.array(vl4 > 0.5, dtype=int) != DeLabelTest
                             ) / len(DeLabelTest)

                teLoss = sess.run(engyLoss, feed_dict=AdValidDict)
                tl4 = sess.run(L4, feed_dict=DeValidDict)
                tl4 = np.sum(np.array(tl4 > 0.5, dtype=int) != DeLabelValid
                             ) / len(DeLabelValid)

                print(epoch, eLoss, l4)
                print(epoch, veLoss, vl4)
                print(epoch, teLoss, tl4)
                print(" ")

                RMSE_train[int(epoch / 20)] = eLoss
                RMSE_valid[int(epoch / 20)] = veLoss

        eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
        l4 = sess.run(L4, feed_dict=DeTrainDict)
        l4 = np.sum(
            np.array(l4 > 0.5, dtype=int) != DeLabelTrain) / len(DeLabelTrain)

        veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
        vl4 = sess.run(L4, feed_dict=DeTestDict)
        vl4 = np.sum(
            np.array(vl4 > 0.5, dtype=int) != DeLabelTest) / len(DeLabelTest)

        teLoss = sess.run(engyLoss, feed_dict=AdValidDict)
        tl4 = sess.run(L4, feed_dict=DeValidDict)
        tl4 = np.sum(
            np.array(tl4 > 0.5, dtype=int) != DeLabelValid) / len(DeLabelValid)

        print(epoch, eLoss, l4)
        print(epoch, veLoss, vl4)
        print(epoch, teLoss, tl4)
        print(" ")

        RMSE_train[-1] = eLoss
        RMSE_valid[-1] = veLoss

        if save:
            savePath = saver.save(sess, "./" + logFile + "/model.ckpt")
            np.savez(logFile + "/featParams", **featParams)
            np.savez(logFile + "/nnParams", **nnParams)
            print("Model saved:", savePath)

        mu = sess.run(tff.getMu())
        w = [sess.run(tff.getW("layer" + str(l))) for l in range(1, 4)]
        b = [sess.run(tff.getB("layer" + str(l))) for l in range(1, 4)]

    return RMSE_train, RMSE_valid, mu, w, b
コード例 #6
0
def trainEL(AdFeat,
            AdEngy,
            DeFeat,
            featParams,
            nnParams,
            save=False,
            load=False,
            logFile="log"):
    AdFeatTrain, AdFeatTest, AdEngyTrain, AdEngyTest = train_test_split(
        AdFeat, AdEngy, test_size=0.1)

    DeFeatTrain, DeFeatTest, DeLabelTrain, DeLabelTest = train_test_split(
        np.concatenate((AdFeat, DeFeat), axis=0),
        np.concatenate((np.zeros_like(AdEngy), np.ones(len(DeFeat))), axis=0),
        test_size=0.1)

    tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
    tf_engy = tf.placeholder(tf.float32, (None))
    tf_labels = tf.placeholder(tf.float32, (None))
    tf_LR = tf.placeholder(tf.float32)

    L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)
    L4 = tff.getAd(tf_feat, featParams['nFeat'], nnParams)

    engyLoss = tf.reduce_mean((L3 - tf_engy)**2)
    logitLoss = tf.reduce_mean((L4 - tf_labels)**2)

    with tf.variable_scope("optimizers", reuse=tf.AUTO_REUSE):
        optimizer3 = tf.train.AdamOptimizer(tf_LR).minimize(engyLoss)
        optimizer4 = tf.train.AdamOptimizer(tf_LR).minimize(logitLoss)

    with tf.Session() as sess:
        saver = tf.train.Saver(
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        sess.run(tf.global_variables_initializer())

        if load:
            saver.restore(sess, "./" + logFile + "/model.ckpt")
        else:
            featParams['featA'], featParams['featB'] = getFeatAB(AdFeatTrain)

        AdTrainDict = {
            tf_feat: scaleFeat(featParams, AdFeatTrain),
            tf_engy: AdEngyTrain,
            tf_LR: nnParams['learningRate']
        }
        AdTestDict = {
            tf_feat: scaleFeat(featParams, AdFeatTest),
            tf_engy: AdEngyTest,
            tf_LR: nnParams['learningRate']
        }

        DeTrainDict = {
            tf_feat: scaleFeat(featParams, DeFeatTrain),
            tf_labels: DeLabelTrain,
            tf_LR: nnParams['learningRate']
        }
        DeTestDict = {
            tf_feat: scaleFeat(featParams, DeFeatTest),
            tf_labels: DeLabelTest,
            tf_LR: nnParams['learningRate']
        }

        for epoch in range(nnParams['nEpoch']):
            sess.run(optimizer3, feed_dict=AdTrainDict)
            sess.run(optimizer4, feed_dict=DeTrainDict)
            if epoch % 200 == 0:
                eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
                l4 = sess.run(L4, feed_dict=DeTrainDict)
                l4 = np.sum(np.array(l4 > 0.5, dtype=int) != DeLabelTrain
                            ) / len(DeLabelTrain)
                veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
                vl4 = sess.run(L4, feed_dict=DeTestDict)
                vl4 = np.sum(np.array(vl4 > 0.5, dtype=int) != DeLabelTest
                             ) / len(DeLabelTest)
                print(epoch, eLoss, l4)
                print(epoch, veLoss, vl4)
                print(" ")

        eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
        l4 = sess.run(L4, feed_dict=DeTrainDict)
        l4 = np.sum(
            np.array(l4 > 0.5, dtype=int) != DeLabelTrain) / len(DeLabelTrain)
        veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
        vl4 = sess.run(L4, feed_dict=DeTestDict)
        vl4 = np.sum(
            np.array(vl4 > 0.5, dtype=int) != DeLabelTest) / len(DeLabelTest)
        print(epoch, eLoss, l4)
        print(epoch, veLoss, vl4)
        print(" ")

        if save:
            savePath = saver.save(sess, "./" + logFile + "/model.ckpt")
            np.savez(logFile + "/featParams", **featParams)
            np.savez(logFile + "/nnParams", **nnParams)
            print("Model saved:", savePath)
コード例 #7
0
def trainEL_getError(featSets, engySets, featParams, nnParams, logFile="log"):

    AdFeatTrain, AdFeatValid, AdFeatTest, DeFeatTrain, DeFeatValid, DeFeatTest = featSets
    AdEngyTrain, AdEngyValid, AdEngyTest, DeLabelTrain, DeLabelValid, DeLabelTest = engySets

    print("Adsorption - Train:Validation:Test = {}:{}:{}".format(
        len(AdEngyTrain), len(AdEngyValid), len(AdEngyTest)))
    print("Desorption - Train:Validation:Test = {}:{}:{}".format(
        len(DeLabelTrain), len(DeLabelValid), len(DeLabelTest)))

    tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat']))
    tf_engy = tf.placeholder(tf.float32, (None))
    tf_labels = tf.placeholder(tf.float32, (None))
    tf_LR = tf.placeholder(tf.float32)

    L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams)
    L4 = tff.getAd(tf_feat, featParams['nFeat'], nnParams)

    engyLoss = tf.reduce_mean((L3 - tf_engy)**2)
    # logitLoss = tf.reduce_mean((L4 - tf_labels) ** 2)

    with tf.Session() as sess:
        saver = tf.train.Saver(
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, "./" + logFile + "/model.ckpt")

        AdTrainDict = {
            tf_feat: scaleFeat(featParams, AdFeatTrain),
            tf_engy: AdEngyTrain,
            tf_LR: nnParams['learningRate']
        }
        AdTestDict = {
            tf_feat: scaleFeat(featParams, AdFeatTest),
            tf_engy: AdEngyTest,
            tf_LR: nnParams['learningRate']
        }
        AdValidDict = {
            tf_feat: scaleFeat(featParams, AdFeatValid),
            tf_engy: AdEngyValid,
            tf_LR: nnParams['learningRate']
        }

        DeTrainDict = {
            tf_feat: scaleFeat(featParams, DeFeatTrain),
            tf_labels: DeLabelTrain,
            tf_LR: nnParams['learningRate']
        }
        DeTestDict = {
            tf_feat: scaleFeat(featParams, DeFeatTest),
            tf_labels: DeLabelTest,
            tf_LR: nnParams['learningRate']
        }
        DeValidDict = {
            tf_feat: scaleFeat(featParams, DeFeatValid),
            tf_labels: DeLabelValid,
            tf_LR: nnParams['learningRate']
        }

        eLoss = sess.run(engyLoss, feed_dict=AdTrainDict)
        l4 = sess.run(L4, feed_dict=DeTrainDict)
        l4 = np.sum(
            np.array(l4 > 0.5, dtype=int) != DeLabelTrain) / len(DeLabelTrain)

        veLoss = sess.run(engyLoss, feed_dict=AdTestDict)
        vl4 = sess.run(L4, feed_dict=DeTestDict)
        vl4 = np.sum(
            np.array(vl4 > 0.5, dtype=int) != DeLabelTest) / len(DeLabelTest)

        teLoss = sess.run(engyLoss, feed_dict=AdValidDict)
        tl4 = sess.run(L4, feed_dict=DeValidDict)
        tl4 = np.sum(
            np.array(tl4 > 0.5, dtype=int) != DeLabelValid) / len(DeLabelValid)

        print("Training set error: ", eLoss, l4)
        print("Validation set error: ", veLoss, vl4)
        print("Testing set error: ", teLoss, tl4)
        print(" ")