'Neural network structure: detection {} and modification {}'.format( pargs.dnet, pargs.mnet)) dlayers = list(map(int, pargs.dnet.split('-'))) mlayers = list(map(int, pargs.mnet.split('-'))) dact = list(map(tf_network.parse_act, pargs.dact.split('-'))) mact = list(map(tf_network.parse_act, pargs.mact.split('-'))) init_w = {'w': {'stddev': 0.1}, 'b': {'value': 0.5}} x = tf.placeholder(tf.float32, shape=[None, dlayers[0]], name='x-input') keep_prob = tf.placeholder( tf.float32, name='keep_prob_detector') if pargs.ddrop > 0.0 else None keep_prob2 = tf.placeholder( tf.float32, name='keep_prob_modifier') if pargs.mdrop > 0.0 else None y_, y = tf_network.build_network(dlayers, dact, init_weights=init_w, input_x_holder=x, dropout_holder=keep_prob, bn=pargs.bn, scope='detector/')[1:] y2_, y2 = tf_network.build_network(mlayers, mact, init_weights=init_w, input_x_holder=x, dropout_holder=keep_prob2, bn=pargs.bn, scope='modifier/')[1:] if pargs.mve: s = tf_network.build_network(mlayers, mact, init_weights=init_w, input_x_holder=x,
import numpy as np dtype_real = np.float32 # NOTE: if double precision, use float64 dtype_int = np.int32 # NOTE: if int in C is 64bits, use int64 np.random.seed(1) import tensorflow as tf tf_sess = tf.InteractiveSession() import tf_network dlayers = list(map(int, tfopt['dnet'].split('-'))) mlayers = list(map(int, tfopt['mnet'].split('-'))) dact = list(map(tf_network.parse_act, tfopt['dact'].split('-'))) mact = list(map(tf_network.parse_act, tfopt['mact'].split('-'))) x = tf.placeholder(tf.float32, shape=[None, dlayers[0]], name='x-input') y_, y = tf_network.build_network(dlayers, dact, input_x_holder=x, bn=tfopt['bn'], is_training=False, scope='detector/')[1:] y2_, y2 = tf_network.build_network(mlayers, mact, input_x_holder=x, bn=tfopt['bn'], is_training=False, scope='modifier/')[1:] if tfopt['mve']: sd = tf_network.build_network(mlayers, mact, input_x_holder=x, input_y_holder=y2_, bn=tfopt['bn'], is_training=False, scope='modifier_var/')[2] tf_saver = tf.train.Saver() modelfile = pargs.load + '/model.ckpt' tf_saver.restore(tf_sess, modelfile) print('Pre-trained model {} loaded\n'.format(modelfile)) import manta as mt mt.tFluid = FlagFluid mt.tObstacle = FlagObstacle nogui = False pause = False