コード例 #1
0
def spline_matrix(x, xi, yi, bc_type="not-a-knot"):
    """calculate spline interpolation"""
    xi_m = spline_xi_matrix(xi)  # (N_range, 4, N_yi)
    x_m = spline_x_matrix(x, xi)  # (..., N_range, 4)
    x_m = tf.expand_dims(x_m, axis=-1)
    m = tf.reduce_sum(xi_m * x_m, axis=[-3, -2])
    return tf.reduce_sum(tf.cast(m, yi.dtype) * yi, axis=-1)
コード例 #2
0
    def interp(self, m):
        # q = data_extra[self.outs[0]]["|q|"]
        # a = self.a()
        p = self.point_value()
        zeros = tf.zeros_like(m)
        ones = tf.ones_like(m)

        def poly_i(i, xi):
            tmp = zeros
            for j in range(i - 1, i + 1):
                if j < 0 or j > self.interp_N - 1:
                    continue
                r = ones
                for k in range(j, j + 2):
                    if k == i:
                        continue
                    r = r * (m - xi[k]) / (xi[i] - xi[k])
                r = tf.where((m >= xi[j]) & (m < xi[j + 1]), r, zeros)
                tmp = tmp + r
            return tmp

        h = tf.stack(
            [poly_i(i, self.points) for i in range(1, self.interp_N - 1)],
            axis=-1,
        )
        h = tf.stop_gradient(h)
        p_r = tf.math.real(p)
        p_i = tf.math.imag(p)
        ret_r = tf.reduce_sum(h * p_r, axis=-1)
        ret_i = tf.reduce_sum(h * p_i, axis=-1)
        return tf.complex(ret_r, ret_i)
コード例 #3
0
 def interp(self, m):
     zeros = tf.zeros_like(m)
     p = self.point_value()
     p_r = tf.math.real(p)
     p_i = tf.math.imag(p)
     xi_m = self.h_matrix
     x_m = spline_x_matrix(m, self.points)
     x_m = tf.expand_dims(x_m, axis=-1)
     m_xi = tf.reduce_sum(xi_m * x_m, axis=[-3, -2])
     m_xi = tf.stop_gradient(m_xi)
     ret_r = tf.reduce_sum(tf.cast(m_xi, p_r.dtype) * p_r, axis=-1)
     ret_i = tf.reduce_sum(tf.cast(m_xi, p_i.dtype) * p_i, axis=-1)
     return tf.complex(ret_r, ret_i)
コード例 #4
0
ファイル: base.py プロジェクト: ReynLieu/tf-pwa
 def get_amp(self, data, data_c=None, **kwargs):
     m = data["m"]
     mass1 = self.mass1()
     mass2 = self.mass2()
     width1 = self.width1()
     width2 = self.width2()
     q = data_c["|q|"]
     mdaughter1 = kwargs["all_data"]["particle"][self.decay[0].outs[0]]["m"]
     mdaughter2 = kwargs["all_data"]["particle"][self.decay[0].outs[1]]["m"]
     q1 = get_relative_p(mass1, mdaughter1, mdaughter2)
     q2 = get_relative_p(mass2, mdaughter1, mdaughter2)
     mlist = tf.stack([mass1, mass2])
     wlist = tf.stack([width1, width2])
     qlist = tf.stack([q1, q2])
     Klist = []
     for mi, wi, qi in zip(mlist, wlist, qlist):
         rw = Gamma(m, wi, q, qi, self.bw_l, mi, self.d)
         Klist.append(mi * rw / (mi**2 - m**2))
     KK = tf.reduce_sum(Klist, axis=0)
     KK += self.alpha()
     beta_term = self.get_beta(
         m=m,
         mlist=mlist,
         wlist=wlist,
         q=q,
         qlist=qlist,
         Klist=Klist,
         **kwargs,
     )
     MM = tf.complex(np.float64(1), -KK)
     MM = beta_term / MM
     return MM + self.KNR()
コード例 #5
0
def do_spline_hmatrix(h_matrix, y, m, idx):
    ai, bi, ci, di = tf.unstack(tf.reduce_sum(h_matrix * y, axis=-1), axis=0)
    a, b, c, d = (
        tf.gather(ai, idx),
        tf.gather(bi, idx),
        tf.gather(ci, idx),
        tf.gather(di, idx),
    )
    ret = a + m * (b + m * (c + d * m))
    return ret
コード例 #6
0
    def interp(self, m):
        p = self.point_value()
        ones = tf.ones_like(m)
        zeros = tf.zeros_like(m)

        def add_f(x, bl, br):
            return tf.where((x > bl) & (x <= br), ones, zeros)

        x_bin = tf.stack(
            [
                add_f(
                    m,
                    (self.points[i] + self.points[i + 1]) / 2,
                    (self.points[i + 1] + self.points[i + 2]) / 2,
                ) for i in range(self.interp_N - 2)
            ],
            axis=-1,
        )
        p_r = tf.math.real(p)
        p_i = tf.math.imag(p)
        x_bin = tf.stop_gradient(x_bin)
        ret_r = tf.reduce_sum(x_bin * p_r, axis=-1)
        ret_i = tf.reduce_sum(x_bin * p_i, axis=-1)
        return tf.complex(ret_r, ret_i)
コード例 #7
0
    def interp(self, m):
        # q = data_extra[self.outs[0]]["|q|"]
        # a = self.a()
        zeros = tf.zeros_like(m)
        p = tf.abs(self.point_value())

        def add_f(x, bl, br, pl, pr):
            return tf.where(
                (x > bl) & (x <= br),
                (x - bl) / (br - bl) * (pr - pl) + pl,
                zeros,
            )

        ret = [
            add_f(m, self.points[i], self.points[i + 1], p[i], p[i + 1])
            for i in range(self.interp_N - 1)
        ]
        return tf.complex(tf.reduce_sum(ret, axis=0), zeros)
コード例 #8
0
    def interp(self, m):
        zeros = tf.zeros_like(m)
        p = self.point_value()
        xs = []

        def poly_i(i):
            x = 1.0
            for j in range(self.interp_N):
                if i == j:
                    continue
                x = (x * (m - self.points[j]) /
                     (self.points[i] - self.points[j]))
            return x

        xs = tf.stack([poly_i(i) for i in range(self.interp_N)], axis=-1)
        zeros = tf.zeros_like(xs)
        xs = tf.complex(xs, zeros)
        ret = tf.reduce_sum(xs[:, 1:-1] * p, axis=-1)
        return ret