def testSummariesAreFlushedToDisk(self): checkpoint_dir = tempfile.mkdtemp('summaries_are_flushed') logdir = tempfile.mkdtemp('summaries_are_flushed_eval') if gfile.Exists(logdir): gfile.DeleteRecursively(logdir) # Train a Model to completion: self._train_model(checkpoint_dir, num_steps=300) # Create the model (which can be restored). inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) logistic_classifier(inputs) names_to_values = {'bread': 3.4, 'cheese': 4.5, 'tomato': 2.0} for k in names_to_values: v = names_to_values[k] summary_lib.scalar(k, v) evaluation.evaluate_repeatedly( checkpoint_dir=checkpoint_dir, hooks=[ evaluation.SummaryAtEndHook(log_dir=logdir), ], max_number_of_evaluations=1) self._verify_events(logdir, names_to_values)
def testEvaluateWithEvalFeedDict(self): # Create a checkpoint. checkpoint_dir = tempfile.mkdtemp('evaluate_with_eval_feed_dict') self._train_model(checkpoint_dir, num_steps=1) # We need a variable that the saver will try to restore. variables.get_or_create_global_step() # Create a variable and an eval op that increments it with a placeholder. my_var = variables.local_variable(0.0, name='my_var') increment = array_ops.placeholder(dtype=dtypes.float32) eval_ops = state_ops.assign_add(my_var, increment) increment_value = 3 num_evals = 5 expected_value = increment_value * num_evals final_values = evaluation.evaluate_repeatedly( checkpoint_dir=checkpoint_dir, eval_ops=eval_ops, feed_dict={increment: 3}, final_ops={'my_var': array_ops.identity(my_var)}, hooks=[ evaluation.StopAfterNEvalsHook(num_evals), ], max_number_of_evaluations=1) self.assertEqual(final_values['my_var'], expected_value)
def testEvaluationLoopTimeoutWithTimeoutFn(self): checkpoint_dir = tempfile.mkdtemp('evaluation_loop_timeout_with_timeout_fn') # Train a Model to completion: self._train_model(checkpoint_dir, num_steps=300) # Run inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) labels = constant_op.constant(self._labels, dtype=dtypes.float32) logits = logistic_classifier(inputs) predictions = math_ops.round(logits) accuracy, update_op = metrics.accuracy( predictions=predictions, labels=labels) timeout_fn_calls = [0] def timeout_fn(): timeout_fn_calls[0] += 1 return timeout_fn_calls[0] > 3 final_values = evaluation.evaluate_repeatedly( checkpoint_dir=checkpoint_dir, eval_ops=update_op, final_ops={'accuracy': accuracy}, hooks=[ evaluation.StopAfterNEvalsHook(1), ], eval_interval_secs=1, max_number_of_evaluations=2, timeout=0.1, timeout_fn=timeout_fn) # We should have evaluated once. self.assertGreater(final_values['accuracy'], .99) # And called 4 times the timeout fn self.assertEqual(4, timeout_fn_calls[0])
def testEvaluationLoopTimeout(self): checkpoint_dir = tempfile.mkdtemp('evaluation_loop_timeout') if not gfile.Exists(checkpoint_dir): gfile.MakeDirs(checkpoint_dir) # We need a variable that the saver will try to restore. variables.get_or_create_global_step() # Run with placeholders. If we actually try to evaluate this, we'd fail # since we're not using a feed_dict. cant_run_op = array_ops.placeholder(dtype=dtypes.float32) start = time.time() final_values = evaluation.evaluate_repeatedly( checkpoint_dir=checkpoint_dir, eval_ops=cant_run_op, hooks=[evaluation.StopAfterNEvalsHook(10)], timeout=6) end = time.time() self.assertFalse(final_values) # Assert that we've waited for the duration of the timeout (minus the sleep # time). self.assertGreater(end - start, 5.0) # Then the timeout kicked in and stops the loop. self.assertLess(end - start, 7)
def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') ds = dataset_loader.data_loader(data_path=FLAGS.eval_data_dir, epochs=1, batch_size=1, training=False, load_estimated_rot=FLAGS.model == 'T') elements = tf.compat.v1.data.make_one_shot_iterator(ds).get_next() src_img, trt_img = elements.src_image, elements.trt_image rotation_gt = elements.rotation translation_gt = elements.translation if FLAGS.model == '9D': metrics_to_values, metrics_to_updates = eval_direction_net_rotation( src_img, trt_img, rotation_gt, 3) elif FLAGS.model == '6D': metrics_to_values, metrics_to_updates = eval_direction_net_rotation( src_img, trt_img, rotation_gt, 2) elif FLAGS.model == 'T': fov_gt = tf.squeeze(elements.fov, -1) rotation_pred = elements.rotation_pred metrics_to_values, metrics_to_updates = eval_direction_net_translation( src_img, trt_img, rotation_gt, translation_gt, fov_gt, rotation_pred, FLAGS.derotate_both) elif FLAGS.model == 'Single': metrics_to_values, metrics_to_updates = eval_direction_net_single( src_img, trt_img, rotation_gt, translation_gt) for name, value in metrics_to_values.items(): tf.summary.scalar('eval/' + name, tf.Print(value, [value], name)) num_eval_steps = FLAGS.testset_size/FLAGS.batch-1 hooks = [ evaluation.StopAfterNEvalsHook(num_eval_steps), evaluation.SummaryAtEndHook(FLAGS.save_summary_dir) ] evaluation.evaluate_repeatedly( checkpoint_dir=FLAGS.checkpoint_dir, eval_ops=list(metrics_to_updates.values()), hooks=hooks, eval_interval_secs=FLAGS.eval_interval_secs)
def testEvaluatePerfectModel(self): checkpoint_dir = tempfile.mkdtemp('evaluate_perfect_model_repeated') # Train a Model to completion: self._train_model(checkpoint_dir, num_steps=300) # Run inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) labels = constant_op.constant(self._labels, dtype=dtypes.float32) logits = logistic_classifier(inputs) predictions = math_ops.round(logits) accuracy, update_op = metrics.accuracy( predictions=predictions, labels=labels) final_values = evaluation.evaluate_repeatedly( checkpoint_dir=checkpoint_dir, eval_ops=update_op, final_ops={'accuracy': accuracy}, hooks=[ evaluation.StopAfterNEvalsHook(1), ], max_number_of_evaluations=1) self.assertGreater(final_values['accuracy'], .99)
def evaluation_loop(master, checkpoint_dir, logdir, num_evals=1, initial_op=None, initial_op_feed_dict=None, init_fn=None, eval_op=None, eval_op_feed_dict=None, final_op=None, final_op_feed_dict=None, summary_op=_USE_DEFAULT, summary_op_feed_dict=None, variables_to_restore=None, eval_interval_secs=60, max_number_of_evaluations=None, session_config=None, timeout=None, timeout_fn=None, hooks=None): """Runs TF-Slim's Evaluation Loop. Args: master: The BNS address of the TensorFlow master. checkpoint_dir: The directory where checkpoints are stored. logdir: The directory where the TensorFlow summaries are written to. num_evals: The number of times to run `eval_op`. initial_op: An operation run at the beginning of evaluation. initial_op_feed_dict: A feed dictionary to use when executing `initial_op`. init_fn: An optional callable to be executed after `init_op` is called. The callable must accept one argument, the session being initialized. eval_op: A operation run `num_evals` times. eval_op_feed_dict: The feed dictionary to use when executing the `eval_op`. final_op: An operation to execute after all of the `eval_op` executions. The value of `final_op` is returned. final_op_feed_dict: A feed dictionary to use when executing `final_op`. summary_op: The summary_op to evaluate after running TF-Slims metric ops. By default the summary_op is set to tf.compat.v1.summary.merge_all(). summary_op_feed_dict: An optional feed dictionary to use when running the `summary_op`. variables_to_restore: A list of TensorFlow variables to restore during evaluation. If the argument is left as `None` then slim.variables.GetVariablesToRestore() is used. eval_interval_secs: The minimum number of seconds between evaluations. max_number_of_evaluations: the max number of iterations of the evaluation. If the value is left as 'None', the evaluation continues indefinitely. session_config: An instance of `tf.compat.v1.ConfigProto` that will be used to configure the `Session`. If left as `None`, the default will be used. timeout: The maximum amount of time to wait between checkpoints. If left as `None`, then the process will wait indefinitely. timeout_fn: Optional function to call after a timeout. If the function returns True, then it means that no new checkpoints will be generated and the iterator will exit. The function is called with no arguments. hooks: A list of additional `SessionRunHook` objects to pass during repeated evaluations. Returns: The value of `final_op` or `None` if `final_op` is `None`. """ if summary_op == _USE_DEFAULT: summary_op = summary.merge_all() all_hooks = [ evaluation.StopAfterNEvalsHook(num_evals), ] if summary_op is not None: all_hooks.append( evaluation.SummaryAtEndHook(log_dir=logdir, summary_op=summary_op, feed_dict=summary_op_feed_dict)) if hooks is not None: # Add custom hooks if provided. all_hooks.extend(hooks) saver = None if variables_to_restore is not None: saver = tf_saver.Saver(variables_to_restore) return evaluation.evaluate_repeatedly( checkpoint_dir, master=master, scaffold=monitored_session.Scaffold( init_op=initial_op, init_feed_dict=initial_op_feed_dict, init_fn=init_fn, saver=saver), eval_ops=eval_op, feed_dict=eval_op_feed_dict, final_ops=final_op, final_ops_feed_dict=final_op_feed_dict, eval_interval_secs=eval_interval_secs, hooks=all_hooks, config=session_config, max_number_of_evaluations=max_number_of_evaluations, timeout=timeout, timeout_fn=timeout_fn)