コード例 #1
0
ファイル: pointnet_util.py プロジェクト: colzycat/LG-GAN
def pointnet_fp_module(xyz1, xyz2, points1, points2, mlp, is_training, bn_decay, scope, bn=True,ibn=False):
    ''' PointNet Feature Propogation (FP) Module
        Input:                                                                                                      
            xyz1: (batch_size, ndataset1, 3) TF tensor                                                              
            xyz2: (batch_size, ndataset2, 3) TF tensor, sparser than xyz1                                           
            points1: (batch_size, ndataset1, nchannel1) TF tensor                                                   
            points2: (batch_size, ndataset2, nchannel2) TF tensor
            mlp: list of int32 -- output size for MLP on each point                                                 
        Return:
            new_points: (batch_size, ndataset1, mlp[-1]) TF tensor
    '''
    with tf.variable_scope(scope) as sc:
        dist, idx = three_nn(xyz1, xyz2)
        dist = tf.maximum(dist, 1e-10)
        norm = tf.reduce_sum((1.0/dist),axis=2,keep_dims=True)
        norm = tf.tile(norm,[1,1,3])
        weight = (1.0/dist) / norm
        interpolated_points = three_interpolate(points2, idx, weight)

        if points1 is not None:
            new_points1 = tf.concat(axis=2, values=[interpolated_points, points1]) # B,ndataset1,nchannel1+nchannel2
        else:
            new_points1 = interpolated_points
        new_points1 = tf.expand_dims(new_points1, 2)
        for i, num_out_channel in enumerate(mlp):
            new_points1 = tf_util2.conv2d(new_points1, num_out_channel, [1,1],
                                         padding='VALID', stride=[1,1],
                                         bn=bn,is_training=is_training,
                                         scope='conv_%d'%(i), bn_decay=bn_decay)
        new_points1 = tf.squeeze(new_points1, [2]) # B,ndataset1,mlp[-1]
        return new_points1
コード例 #2
0
ファイル: pointnet_util.py プロジェクト: colzycat/LG-GAN
def pointnet_sa_module_bn(labels_onehot, xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training,
                       bn_decay, scope, bn=True, ibn=False, pooling='max', tnet_spec=None, knn=False, use_xyz=True):
    with tf.variable_scope(scope) as sc:
        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group(npoint, radius, nsample, xyz, points, tnet_spec, knn, use_xyz)
        if mlp2 is None: mlp2 = []
        for i, num_out_channel in enumerate(mlp):
            if(i==0):
                new_points = tf_util2.conv2d_bn(labels_onehot, new_points, num_out_channel, [1,1],
                                            padding='VALID', stride=[1,1],
                                            bn=bn, is_training=is_training,
                                            scope='conv%d'%(i), bn_decay=bn_decay)
            else:
                new_points = tf_util2.conv2d(new_points, num_out_channel, [1,1],
                                            padding='VALID', stride=[1,1],
                                            bn=bn, is_training=is_training,
                                            scope='conv%d'%(i), bn_decay=bn_decay)
        if pooling=='avg':
            new_points = tf.layers.average_pooling2d(new_points, [1,nsample], [1,1], padding='VALID', name='avgpool1')
        elif pooling=='weighted_avg':
            with tf.variable_scope('weighted_avg1'):
                dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
                new_points *= weights # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        elif pooling=='max':
            new_points = tf.reduce_max(new_points, axis=[2], keep_dims=True)
        elif pooling=='min':
            new_points = tf.layers.max_pooling2d(-1 * new_points, [1, nsample], [1, 1], padding='VALID',name='minpool1')
        elif pooling=='max_and_avg':
            avg_points = tf.layers.max_pooling2d(new_points, [1,nsample], [1,1], padding='VALID', name='maxpool1')
            max_points = tf.layers.average_pooling2d(new_points, [1,nsample],[1,1], padding='VALID', name='avgpool1')
            new_points = tf.concat([avg_points, max_points], axis=-1)
            
        if mlp2 is None: mlp2 = []
        for i, num_out_channel in enumerate(mlp2):
            new_points = tf_util2.conv2d(new_points, num_out_channel, [1,1],
                                        padding='VALID', stride=[1,1],
                                        bn=bn,is_training=is_training,
                                        scope='conv_post_%d'%(i), bn_decay=bn_decay) 
        new_points = tf.squeeze(new_points, [2]) # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx
コード例 #3
0
def pointnet_sa_module(xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training, bn_decay, scope, bn=True, pooling='max', tnet_spec=None, knn=False, use_xyz=True, reuse=False):
    ''' PointNet Set Abstraction (SA) Module
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: float32 -- search radius in local region
            nsample: int32 -- how many points in each local region
            mlp: list of int32 -- output size for MLP on each point
            mlp2: list of int32 -- output size for MLP on each region
            group_all: bool -- group all points into one PC if set true, OVERRIDE
                npoint, radius and nsample settings
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
            idx: (batch_size, npoint, nsample) int32 -- indices for local regions
    '''
    # with tf.variable_scope('sc2',reuse):
    with tf.variable_scope(scope) as sc:

        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group(npoint, radius, nsample, xyz, points, tnet_spec, knn, use_xyz)
        for i, num_out_channel in enumerate(mlp):
            print new_points
            new_points = tf_util2.conv2d(new_points, num_out_channel, [1,1],
                                        padding='VALID', stride=[1,1],
                                        bn=bn, is_training=is_training,
                                        scope='conv%d'%(i), bn_decay=bn_decay,reuse=reuse) 
        if pooling=='avg':
            new_points = tf_util.avg_pool2d(new_points, [1,nsample], stride=[1,1], padding='VALID', scope='avgpool1')
        elif pooling=='weighted_avg':
            with tf.variable_scope('weighted_avg1'):
                dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
                new_points *= weights # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        elif pooling=='max':
            new_points = tf.reduce_max(new_points, axis=[2], keep_dims=True)
        elif pooling=='min':
            new_points = tf_util.max_pool2d(-1*new_points, [1,nsample], stride=[1,1], padding='VALID', scope='minpool1')
        elif pooling=='max_and_avg':
            avg_points = tf_util.max_pool2d(new_points, [1,nsample], stride=[1,1], padding='VALID', scope='maxpool1')
            max_points = tf_util.avg_pool2d(new_points, [1,nsample], stride=[1,1], padding='VALID', scope='avgpool1')
            new_points = tf.concat([avg_points, max_points], axis=-1)
            
        if mlp2 is None: mlp2 = []
        for i, num_out_channel in enumerate(mlp2):
            new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],
                                        padding='VALID', stride=[1,1],
                                        bn=bn, is_training=is_training,
                                        scope='conv_post_%d'%(i), bn_decay=bn_decay) 
        new_points = tf.squeeze(new_points, [2]) # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx
コード例 #4
0
ファイル: pointnet_util.py プロジェクト: Serenade-ajp/PU-Net
def pointnet_sa_module_msg(xyz,
                           points,
                           npoint,
                           radius_list,
                           nsample_list,
                           mlp_list,
                           is_training,
                           bn_decay,
                           scope,
                           bn=True,
                           ibn=False,
                           use_xyz=True):
    ''' PointNet Set Abstraction (SA) module with Multi-Scale Grouping (MSG)
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: list of float32 -- search radius in local region
            nsample: list of int32 -- how many points in each local region
            mlp: list of list of int32 -- output size for MLP on each point
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, \sum_k{mlp[k][-1]}) TF tensor
    '''
    with tf.variable_scope(scope) as sc:
        new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
        new_points_list = []
        for i in range(len(radius_list)):
            radius = radius_list[i]
            nsample = nsample_list[i]
            idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
            grouped_xyz = group_point(xyz, idx)
            grouped_xyz -= tf.expand_dims(new_xyz, 2)
            if points is not None:
                grouped_points = group_point(points, idx)
                if use_xyz:
                    grouped_points = tf.concat([grouped_points, grouped_xyz],
                                               axis=-1)
            else:
                grouped_points = grouped_xyz
            for j, num_out_channel in enumerate(mlp_list[i]):
                grouped_points = tf_util2.conv2d(grouped_points,
                                                 num_out_channel, [1, 1],
                                                 padding='VALID',
                                                 stride=[1, 1],
                                                 bn=bn,
                                                 ibn=ibn,
                                                 is_training=is_training,
                                                 scope='conv%d_%d' % (i, j),
                                                 bn_decay=bn_decay)
            new_points = tf.reduce_max(grouped_points, axis=[2])
            new_points_list.append(new_points)
        new_points_concat = tf.concat(new_points_list, axis=-1)
        return new_xyz, new_points_concat
コード例 #5
0
ファイル: transnet_basic.py プロジェクト: liruihui/TransNet
def get_model(point_cloud, is_training, bn_decay=None, channel=3):
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    input_image = tf.expand_dims(point_cloud, -1)

    # Point functions (MLP implemented as conv2d)
    net = tf_util.conv2d(input_image,
                         64, [1, channel],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv1',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv2',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv3',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         128, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv4',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         1024, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv5',
                         bn_decay=bn_decay)

    # Symmetric function: max pooling
    net = tf_util.max_pool2d(net, [num_point, 1],
                             padding='VALID',
                             scope='maxpool')
    #net = tf.reduce_max(net, axis=[2], keep_dims=True)

    # MLP on global point cloud vector
    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net,
                                  512,
                                  bn=True,
                                  is_training=is_training,
                                  scope='fc1',
                                  bn_decay=bn_decay)
    net = tf_util.fully_connected(net,
                                  256,
                                  bn=True,
                                  is_training=is_training,
                                  scope='fc2',
                                  bn_decay=bn_decay)
    net = tf_util.dropout(net,
                          keep_prob=0.7,
                          is_training=is_training,
                          scope='dp1')
    net = tf_util.fully_connected(net, 64, activation_fn=None, scope='fc3')
    net = tf.nn.l2_normalize(net, dim=1)

    return net
コード例 #6
0
ファイル: pointnet_util.py プロジェクト: colzycat/LG-GAN
def pointnet_sa_module2(xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training, bn_decay, scope, bn=True, pooling='max', knn=False, use_xyz=True, use_nchw=False):
    ''' PointNet Set Abstraction (SA) Module
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: float32 -- search radius in local region
            nsample: int32 -- how many points in each local region
            mlp: list of int32 -- output size for MLP on each point
            mlp2: list of int32 -- output size for MLP on each region
            group_all: bool -- group all points into one PC if set true, OVERRIDE
                npoint, radius and nsample settings
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
            idx: (batch_size, npoint, nsample) int32 -- indices for local regions
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        # Sample and Grouping
        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group2(npoint, radius, nsample, xyz, points, knn, use_xyz)

        # Point Feature Embedding
        if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
        for i, num_out_channel in enumerate(mlp):
            new_points = tf_util2.conv2d(new_points, num_out_channel, [1,1],
                                        padding='VALID', stride=[1,1],
                                        bn=bn, is_training=is_training,
                                        scope='conv%d'%(i), bn_decay=bn_decay) 
        if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])

        # Pooling in Local Regions
        if pooling=='max':
            new_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
        elif pooling=='avg':
            new_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
        elif pooling=='weighted_avg':
            with tf.variable_scope('weighted_avg'):
                dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
                new_points *= weights # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        elif pooling=='max_and_avg':
            max_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
            avg_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
            new_points = tf.concat([avg_points, max_points], axis=-1)

        # [Optional] Further Processing 
        if mlp2 is not None:
            if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
            for i, num_out_channel in enumerate(mlp2):
                new_points = tf_util2.conv2d(new_points, num_out_channel, [1,1],
                                            padding='VALID', stride=[1,1],
                                            bn=bn, is_training=is_training,
                                            scope='conv_post_%d'%(i), bn_decay=bn_decay) 
            if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])

        new_points = tf.squeeze(new_points, [2]) # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx
コード例 #7
0
def get_gen_model(point_cloud, is_training, scope, bradius = 1.0, reuse=None, use_rv=False, use_bn = False,use_ibn = False,
                  use_normal=False,bn_decay=None, up_ratio = 4,idx=None):

    with tf.variable_scope(scope,reuse=reuse) as sc:
        batch_size = point_cloud.get_shape()[0].value
        num_point = point_cloud.get_shape()[1].value
        l0_xyz = point_cloud[:,:,0:3]
        if use_normal:
            l0_points = point_cloud[:,:,3:]
        else:
            l0_points = None
        # Layer 1
        l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=num_point, radius=bradius*0.05,bn=use_bn,ibn = use_ibn,
                                                           nsample=32, mlp=[32, 32, 64], mlp2=None, group_all=False,
                                                           is_training=is_training, bn_decay=bn_decay, scope='layer1')

        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=num_point/2, radius=bradius*0.1,bn=use_bn,ibn = use_ibn,
                                                           nsample=32, mlp=[64, 64, 128], mlp2=None, group_all=False,
                                                           is_training=is_training, bn_decay=bn_decay, scope='layer2')

        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=num_point/4, radius=bradius*0.2,bn=use_bn,ibn = use_ibn,
                                                           nsample=32, mlp=[128, 128, 256], mlp2=None, group_all=False,
                                                           is_training=is_training, bn_decay=bn_decay, scope='layer3')

        l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=num_point/8, radius=bradius*0.3,bn=use_bn,ibn = use_ibn,
                                                           nsample=32, mlp=[256, 256, 512], mlp2=None, group_all=False,
                                                           is_training=is_training, bn_decay=bn_decay, scope='layer4')

        # Feature Propagation layers
        up_l4_points = pointnet_fp_module(l0_xyz, l4_xyz, None, l4_points, [64], is_training, bn_decay,
                                       scope='fa_layer1',bn=use_bn,ibn = use_ibn)

        up_l3_points = pointnet_fp_module(l0_xyz, l3_xyz, None, l3_points, [64], is_training, bn_decay,
                                       scope='fa_layer2',bn=use_bn,ibn = use_ibn)

        up_l2_points = pointnet_fp_module(l0_xyz, l2_xyz, None, l2_points, [64], is_training, bn_decay,
                                       scope='fa_layer3',bn=use_bn,ibn = use_ibn)

        ###concat feature
        with tf.variable_scope('up_layer',reuse=reuse):
            new_points_list = []
            for i in range(up_ratio):
                concat_feat = tf.concat([up_l4_points, up_l3_points, up_l2_points, l1_points, l0_xyz], axis=-1)
                concat_feat = tf.expand_dims(concat_feat, axis=2)
                concat_feat = tf_util2.conv2d(concat_feat, 256, [1, 1],
                                              padding='VALID', stride=[1, 1],
                                              bn=False, is_training=is_training,
                                              scope='fc_layer0_%d'%(i), bn_decay=bn_decay)

                new_points = tf_util2.conv2d(concat_feat, 128, [1, 1],
                                             padding='VALID', stride=[1, 1],
                                             bn=use_bn, is_training=is_training,
                                             scope='conv_%d' % (i),
                                             bn_decay=bn_decay)
                new_points_list.append(new_points)
            net = tf.concat(new_points_list,axis=1)

        #get the xyz
        coord = tf_util2.conv2d(net, 64, [1, 1],
                              padding='VALID', stride=[1, 1],
                              bn=False, is_training=is_training,
                              scope='fc_layer1', bn_decay=bn_decay)

        coord = tf_util2.conv2d(coord, 3, [1, 1],
                             padding='VALID', stride=[1, 1],
                             bn=False, is_training=is_training,
                             scope='fc_layer2', bn_decay=bn_decay,
                             activation_fn=None, weight_decay=0.0)  # B*(2N)*1*3
        coord = tf.squeeze(coord, [2])  # B*(2N)*3

    return coord,None
コード例 #8
0
ファイル: PartialNet.py プロジェクト: liruihui/TransNet
def get_model_new(point_cloud, is_training, bn_decay=None, K=4):
    """ Input (XYZ) Transform Net, input is BxNx3 gray image
        Return:
            Transformation matrix of size 3xK """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    #num_point = tf.shape(point_cloud)[1]

    input_image = tf.expand_dims(point_cloud, -1)
    net = tf_util2.conv2d(input_image,
                          64, [1, 3],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='tconv1',
                          bn_decay=bn_decay)
    net = tf_util2.conv2d(net,
                          128, [1, 1],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='tconv2',
                          bn_decay=bn_decay)
    net = tf_util2.conv2d(net,
                          1024, [1, 1],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='tconv3',
                          bn_decay=bn_decay)
    net = tf_util2.max_pool2d(net, [num_point, 1],
                              padding='VALID',
                              scope='tmaxpool')
    #net = tf.reduce_max(net, axis=[2])

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util2.fully_connected(net,
                                   512,
                                   bn=True,
                                   is_training=is_training,
                                   scope='tfc1',
                                   bn_decay=bn_decay)
    net = tf_util2.fully_connected(net,
                                   256,
                                   bn=True,
                                   is_training=is_training,
                                   scope='tfc2',
                                   bn_decay=bn_decay)

    with tf.variable_scope('transform_XYZ') as sc:
        # assert(K==3)
        weights = tf.get_variable('weights', [256, K],
                                  initializer=tf.constant_initializer(0.0),
                                  dtype=tf.float32)
        biases = tf.get_variable('biases', [4],
                                 initializer=tf.constant_initializer(0.0),
                                 dtype=tf.float32)
        biases += tf.constant([0, 0, 0, 1], dtype=tf.float32)
        transform = tf.matmul(net, weights)
        transform = tf.nn.bias_add(transform, biases)

    transform = tf.reshape(transform, [batch_size, 4])

    transform = tf.nn.l2_normalize(transform, dim=1)

    return transform