def __init__(self, sess, width=256, height=256, channels=3, action_dim=9, learning_rate=0.0001, model_name=None, graph=None, export=False): self.sess = sess self.width = width self.height = height self.channels = channels self.action_dim = action_dim self.learning_rate = learning_rate self.rgb, self.conf, self.vel, = self.create_network('visuonet') if not export: self.velocities = tf.placeholder(tf.float32, [None, 9]) self.loss = tf.reduce_mean( tf.square(self.velocities - self.vel) ) #+ 0.001 * tf.reduce_mean(tf.square(self.gripper - self.vel[:,6])) self.optimizer = tf.train.AdamOptimizer( self.learning_rate).minimize(self.loss) self.model = model(sess, MODELS_DIR, model_name=model_name) self.summary = self.model.summary(graph=graph, **dict(loss=self.loss)) self.eval_indice = len( get_folders(pathname(RES_PATH, **dict(flag=1))))
def __init__(self, sess, width=256, height=256, channels=3, learning_rate=0.0001, z_shape=8, j_shape=9, model_name=None, graph=None, coeff=0.002): self.sess = sess self.width = width self.height = height self.channels = channels self.learning_rate = learning_rate self.z_shape = z_shape self.j_shape = j_shape self.img, self.p_t, self.p_t_1 = self.gen_network('generator') # self.p_t = tf.placeholder(tf.float32, shape = (None, self.j_shape)) # self.std = tf.exp(self.logstds) # self.var = self.std ** 2 # self.loss = 0.5 * tf.reduce_sum(tf.square((self.p_t - self.action_mean) / self.var)) \ # + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(self.p_t)[0]) \ # + tf.reduce_sum(self.logstds) self.std = tf.exp(self.logstds) # self.var = tf.square(self.std) self.p_t_1_l = tf.placeholder(tf.float32, (None, 9)) self.mse_loss = tf.reduce_mean(tf.square(self.p_t_1 - self.p_t_1_l)) lh_loss = 0.5 * tf.reduce_sum(tf.square((self.p_t_1_l - self.p_t_1) / self.std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(self.p_t_1)[-1]) + tf.reduce_sum(self.logstds, axis=-1) self.lh_loss = tf.reduce_mean(lh_loss) self.optimizer = tf.train.AdamOptimizer(learning_rate).minimize( self.lh_loss) self.model = model(sess, MODELS_DIR, model_name=model_name) self.summary = self.model.summary(graph=graph, **dict(mse_loss=self.mse_loss, lh_loss=self.lh_loss)) self.eval_indice = len(get_folders(pathname(RES_PATH, **dict(flag=1))))
train_data = utils.HeadData(config.train_id_docs, np.arange(len(config.train_id_docs))) test_data = utils.HeadData(config.test_id_docs, np.arange(len(config.test_id_docs))) tf.reset_default_graph() tf.set_random_seed(1) utils.printParameters(config) # ---- Training ---- config1 = tf.ConfigProto() config1.gpu_options.per_process_gpu_memory_fraction = 0.85 with tf.Session(config=config1) as sess: # saver = tf.train.import_meta_graph('model.ckpt.meta') # saver.restore(sess, 'model.ckpt') embedding_matrix = tf.get_variable('embedding_matrix', shape=config.wordvectors.shape, dtype=tf.float32, trainable=False).assign(config.wordvectors) emb_mtx = sess.run(embedding_matrix) model = tf_utils.model(config, emb_mtx, sess) obj, m_op, predicted_op_ner, actual_op_ner, predicted_op_rel, actual_op_rel, score_op_rel = model.run() train_step = model.get_train_op(obj) operations = tf_utils.operations(train_step, obj, m_op, predicted_op_ner, actual_op_ner, predicted_op_rel, actual_op_rel, score_op_rel) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() best_score = 0 nepoch_no_imprv = 0 # for early stopping for iter in range(config.nepochs + 1): model.train(train_data, operations, iter) save_path = saver.save(sess, "model.ckpt") print("Model saved in path: %s" % save_path)
from cnn_utils import load_dataset, preprocess_data from tf_utils import model num_classes = 6 # Loading the data (signs) X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Preprocess data X_train, X_test, Y_train, Y_test = preprocess_data(X_train_orig, X_test_orig, Y_train_orig, Y_test_orig, num_classes) # Training the parameters _, _, parameters = model(X_train, Y_train, X_test, Y_test)
import data_service, plot_service, tf_utils X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = data_service.load_dataset( ) plot_service.plot_sample(X_train_orig, Y_train_orig) X_train, Y_train, X_test, Y_test = data_service.preprocess_data( X_train_orig, Y_train_orig, X_test_orig, Y_test_orig) parameters = tf_utils.model(X_train, Y_train, X_test, Y_test)