def add_default_summaries(mode, arop_full_summary_iters, summarize_ops, summarize_names, to_aggregate, action_prob_op, input_tensors, scope_name): assert(mode == 'train_bkp' or mode == 'val' or mode == 'test'), \ 'add_default_summaries mode is neither train_bkp or val or test.' s_ops = tf_utils.get_default_summary_ops() if mode == 'train_bkp': s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \ arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries( summarize_ops, summarize_names, mode, to_aggregate=False, scope_name=scope_name) s_ops.additional_return_ops += additional_return_ops s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns elif mode == 'val': s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \ arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries( summarize_ops, summarize_names, mode, to_aggregate=to_aggregate, scope_name=scope_name) s_ops.additional_return_ops += additional_return_ops s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns elif mode == 'test': s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \ arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries( [], [], mode, to_aggregate=[], scope_name=scope_name) s_ops.additional_return_ops += additional_return_ops s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns if mode == 'val': arop = s_ops.additional_return_ops arop += [[action_prob_op, input_tensors['train_bkp']['action']]] arop += [[ input_tensors['step']['loc_on_map'], input_tensors['common']['goal_loc'], input_tensors['step']['gt_dist_to_goal'] ]] arop += [[ input_tensors['step']['loc_on_map'], input_tensors['common']['orig_maps'], input_tensors['common']['goal_loc'] ]] s_ops.arop_summary_iters += [ -1, arop_full_summary_iters, arop_full_summary_iters ] s_ops.arop_eval_fns += [eval_ap, eval_dist, plot_trajectories] elif mode == 'test': arop = s_ops.additional_return_ops arop += [[ input_tensors['step']['loc_on_map'], input_tensors['common']['goal_loc'], input_tensors['step']['gt_dist_to_goal'] ]] arop += [[input_tensors['step']['gt_dist_to_goal']]] arop += [[ input_tensors['step']['loc_on_map'], input_tensors['common']['goal_loc'], input_tensors['step']['gt_dist_to_goal'], input_tensors['step']['node_ids'], input_tensors['step']['perturbs'] ]] arop += [[ input_tensors['step']['loc_on_map'], input_tensors['common']['orig_maps'], input_tensors['common']['goal_loc'] ]] s_ops.arop_summary_iters += [-1, -1, -1, arop_full_summary_iters] s_ops.arop_eval_fns += [ eval_dist, save_d_at_t, save_all, plot_trajectories ] return s_ops
def add_default_summaries(mode, arop_full_summary_iters, summarize_ops, summarize_names, to_aggregate, action_prob_op, input_tensors, scope_name): assert(mode == 'train' or mode == 'val' or mode == 'test'), \ 'add_default_summaries mode is neither train or val or test.' s_ops = tf_utils.get_default_summary_ops() if mode == 'train': s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \ arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries( summarize_ops, summarize_names, mode, to_aggregate=False, scope_name=scope_name) s_ops.additional_return_ops += additional_return_ops s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns elif mode == 'val': s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \ arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries( summarize_ops, summarize_names, mode, to_aggregate=to_aggregate, scope_name=scope_name) s_ops.additional_return_ops += additional_return_ops s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns elif mode == 'test': s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \ arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries( [], [], mode, to_aggregate=[], scope_name=scope_name) s_ops.additional_return_ops += additional_return_ops s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns if mode == 'val': arop = s_ops.additional_return_ops arop += [[action_prob_op, input_tensors['train']['action']]] arop += [[input_tensors['step']['loc_on_map'], input_tensors['common']['goal_loc'], input_tensors['step']['gt_dist_to_goal']]] arop += [[input_tensors['step']['loc_on_map'], input_tensors['common']['orig_maps'], input_tensors['common']['goal_loc']]] s_ops.arop_summary_iters += [-1, arop_full_summary_iters, arop_full_summary_iters] s_ops.arop_eval_fns += [eval_ap, eval_dist, plot_trajectories] elif mode == 'test': arop = s_ops.additional_return_ops arop += [[input_tensors['step']['loc_on_map'], input_tensors['common']['goal_loc'], input_tensors['step']['gt_dist_to_goal']]] arop += [[input_tensors['step']['gt_dist_to_goal']]] arop += [[input_tensors['step']['loc_on_map'], input_tensors['common']['goal_loc'], input_tensors['step']['gt_dist_to_goal'], input_tensors['step']['node_ids'], input_tensors['step']['perturbs']]] arop += [[input_tensors['step']['loc_on_map'], input_tensors['common']['orig_maps'], input_tensors['common']['goal_loc']]] s_ops.arop_summary_iters += [-1, -1, -1, arop_full_summary_iters] s_ops.arop_eval_fns += [eval_dist, save_d_at_t, save_all, plot_trajectories] return s_ops