コード例 #1
0
def main(args):
    probability_threshold = 50.0

    if (not args.input_tsv_file):
        raise ValueError(
            'You must supply input TSV file with --input_tsv_file.')
    if (not args.output_tsv_file):
        raise ValueError(
            'You must supply output TSV file with --output_tsv_file.')

    if (not os.path.isfile(args.input_tsv_file)):
        return (False)

    model_root_dir = NetworkFactory.model_deploy_dir()
    last_network = 'ONet'
    face_detector = FaceDetector(last_network, model_root_dir)

    classifier_object = Classifier()
    if (not classifier_object.load_dataset(args.dataset_dir)):
        return (False)
    if (not classifier_object.load_model(args.checkpoint_path, args.model_name,
                                         args.gpu_memory_fraction)):
        return (False)

    network_size = classifier_object.network_image_size()

    number_of_images = 0
    good_images = 0
    input_tsv_file = open(args.input_tsv_file, 'r')
    output_tsv_file = open(args.output_tsv_file, 'w')
    while (True):
        input_data = input_tsv_file.readline().strip()
        if (not input_data):
            break

        number_of_images += 1
        fields = input_data.split('\t')
        line_number = str(fields[0])
        image_string = fields[1]

        decoded_image_string = base64.b64decode(image_string)
        image_data = np.fromstring(decoded_image_string, dtype=np.uint8)
        input_image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
        height, width, channels = input_image.shape

        cv2.imwrite('image.png', input_image)
        #misc.imsave('image.png', input_image)
        input_image = misc.imread('image.png')

        input_clone = np.copy(input_image)
        boxes_c, landmarks = face_detector.detect(input_clone)

        face_probability = 0.0
        found = False
        crop_box = []
        for index in range(boxes_c.shape[0]):
            if (boxes_c[index, 4] > face_probability):
                found = True
                face_probability = boxes_c[index, 4]
                bounding_box = boxes_c[index, :4]
                crop_box = [
                    int(max(bounding_box[0], 0)),
                    int(max(bounding_box[1], 0)),
                    int(min(bounding_box[2], width)),
                    int(min(bounding_box[3], height))
                ]
        if (found):
            cropped_image = input_image[crop_box[1]:crop_box[3],
                                        crop_box[0]:crop_box[2], :]
        else:
            cropped_image = input_image

        #resized_image = cv2.resize(cropped_image, (network_size, network_size), interpolation=cv2.INTER_LINEAR)
        resized_image = misc.imresize(cropped_image,
                                      (network_size, network_size),
                                      interp='bilinear')

        class_names_probabilities = classifier_object.classify(
            resized_image, print_results=False)
        predicted_name = ''
        probability = 0.0
        if (len(class_names_probabilities) > 0):
            names = map(operator.itemgetter(0), class_names_probabilities)
            probabilities = map(operator.itemgetter(1),
                                class_names_probabilities)
            predicted_name = str(names[0])
            probability = probabilities[0]
            if ((probability > probability_threshold)
                    or (probability >
                        (probabilities[1] + probabilities[2] / 2.0))):
                good_images += 1

        print(number_of_images, ', predicted_name -', predicted_name,
              ', probability -', probability)
        print('Accuracy = ', (good_images * 100.0) / number_of_images, ' for ',
              number_of_images, ' images.')

        #cv2.imshow('image', cropped_image)
        #cv2.waitKey();

        output_tsv_file.write(line_number + '\t' + str(predicted_name) + '\t' +
                              str(probability) + '\n')

    print('Accuracy = ', (good_images * 100.0) / number_of_images, ' for ',
          number_of_images, ' images.')
    return (True)
コード例 #2
0
def main(args):

	output_dir = os.path.expanduser(args.output_dir)
    	if(not os.path.exists(output_dir)):
        	os.mkdir(output_dir)

	is_processed = {}	
	probability_threshold = [ 0.95, 0.90, 0.85, 0.80 ]

	if(not args.input_tsv_file):
		raise ValueError('You must supply input TSV file with --input_tsv_file.')
	if(not os.path.isfile(args.input_tsv_file)):
		return(False)

	model_root_dir = NetworkFactory.model_deploy_dir()
	last_network='ONet'
	face_detector = FaceDetector(last_network, model_root_dir)

	classifier_object = Classifier()
	if(not classifier_object.load_dataset(args.dataset_dir)):
		return(False)
	if(not classifier_object.load_model(args.checkpoint_path, args.model_name, args.gpu_memory_fraction)):
		return(False)

	network_size = classifier_object.network_image_size()

	celebrity_count = 0	
	for current_threshold in probability_threshold:
		input_tsv_file = open(args.input_tsv_file, 'r')

		while( True ):
		
			input_data = input_tsv_file.readline().strip()
			if( not input_data ):
       				break			

       			fields = input_data.split('\t')		
       			class_name = str(fields[2]) 
			if class_name in is_processed.keys():
				continue

       			image_string = fields[1]
			image_search_rank = fields[3]
       			decoded_image_string = base64.b64decode(image_string)
       			image_data = np.fromstring(decoded_image_string, dtype=np.uint8)
       			input_image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
			height, width, channels = input_image.shape

			class_dir = fields[2] 
			img_name = class_dir + '.png'

			cv2.imwrite('image.png', input_image)
			#misc.imsave('image.png', input_image)
			input_image = misc.imread('image.png')	

			input_clone = np.copy(input_image)
			boxes_c, landmarks = face_detector.detect(input_clone)

			face_probability = 0.0
			found = False
			crop_box = []
       			for index in range(boxes_c.shape[0]):      			
				if(boxes_c[index, 4] > face_probability):
					found = True
      					face_probability = boxes_c[index, 4]
					bounding_box = boxes_c[index, :4]
      					crop_box = [int(max(bounding_box[0],0)), int(max(bounding_box[1],0)), int(min(bounding_box[2], width)), int(min(bounding_box[3], height))]
			if(found):
				cropped_image = input_image[crop_box[1]:crop_box[3],crop_box[0]:crop_box[2],:]			
			else:
				cropped_image = input_image

			#resized_image = cv2.resize(cropped_image, (network_size, network_size), interpolation=cv2.INTER_LINEAR)
			resized_image = misc.imresize(cropped_image, (network_size, network_size), interp='bilinear')

			class_names_probabilities = classifier_object.classify(resized_image, print_results=False)
			predicted_name = ''
			probability = 0.0
			if(len(class_names_probabilities) > 0):
				names = map(operator.itemgetter(0), class_names_probabilities)
				probabilities = map(operator.itemgetter(1), class_names_probabilities)
				predicted_name = str(names[0])
				probability = probabilities[0]
				if( class_name != predicted_name ):
					continue

				if(probability < current_threshold):
					continue  

			is_processed[class_name] = True

       			full_class_dir = os.path.join(output_dir, class_dir)
       			if not os.path.exists(full_class_dir):
       				os.mkdir(full_class_dir)
       				celebrity_count = celebrity_count + 1

       			full_path = os.path.join(full_class_dir, img_name)
       			cv2.imwrite(full_path, resized_image)            		

			#cv2.imshow('image', cropped_image)
			#cv2.waitKey();

	print('Processed ', celebrity_count, 'celebrities.')
	return(True)