####################### nb_sequences = 32 ###################### # Load test database # ###################### print('Loading test datatable...', end='') (src_test_datatable, src_test_masks, trg_test_datatable, trg_test_masks, max_test_length, test_speakers_max, test_speakers_min ) = s2s.seq2seq2_load_datatable( 'data/seq2seq_test_datatable.h5' ) print('done') ############################# # Load model and parameters # ############################# with h5py.File('training_results/seq2seq_training_params.h5', 'r') as f: epochs = f.attrs.get('epochs') learning_rate = f.attrs.get('learning_rate') optimizer = f.attrs.get('optimizer') loss = f.attrs.get('loss') train_speakers_max = f.attrs.get('train_speakers_max') train_speakers_min = f.attrs.get('train_speakers_min') print('Re-initializing model')
'data/seq2seq_test_datatable' ) print('done') else: # Retrieve datatables from .h5 files print('Loading training datatable...', end='') (src_train_datatable, src_train_masks, trg_train_datatable, trg_train_masks, max_train_length, train_speakers_max, train_speakers_min ) = s2s.seq2seq2_load_datatable( 'data/seq2seq_train_datatable.h5' ) print('done') ################## # Normalize data # ################## # Iterate over sequence 'slices' assert src_train_datatable.shape[0] == trg_train_datatable.shape[0] for i in range(src_train_datatable.shape[0]): ( src_train_datatable[i, :, 0:42], trg_train_datatable[i, :, 0:42] ) = maxmin_scaling( src_train_datatable[i, :, :],