CYAN = '\033[96m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' END = '\033[0m' while True: try: cin = input('image path: ') imagePath = Path(cin) img = Image.open(imagePath) img.load() img = resize_image(img, 100, 125) data = np.asarray(img, dtype="float32") data /= 255 data = np.reshape(data, (1, 125, 100, 4)) result = model.predict(data) print(color.BLUE + 'Result:' + color.END) if result[0][0] > .5: if result[0][0] > .9: print(color.GREEN + 'Male (' + str(result[0][0]) + ')' + color.END) print(color.RED + 'Female (' + str(result[0][1]) + ')' + color.END) else: print(color.CYAN + 'Male (' + str(result[0][0]) + ')' + color.END) print(color.BLUE + 'Female (' + str(result[0][1]) + ')' +
loss='categorical_crossentropy', learning_rate=0.001) #training model = tflearn.DNN(network, tensorboard_verbose=3) model.fit(X, Y, n_epoch=13, shuffle=True, validation_set=0.2, show_metric=True, batch_size=96, run_id='brandberg') #classifier while True: try: cin = input('image path: ') imagePath = Path(cin) img = Image.open(imagePath) img.load() img = resize_image(img, 160, 180) data = np.asarray(img, dtype="float32") data /= 255 data = np.reshape(data, (1, 180, 160, 4)) result = model.predict(data) print('Male (' + str(result[0][0]) + ')') print('Female (' + str(result[0][1]) + ')') except FileNotFoundError: print('File not found.')
csv_dir = "/home/goerlab/Bilinear-CNN-TensorFlow/core/model/20180110/record/" csvfile = open(csv_dir + "test_detail.csv", "wb") writer = csv.writer(csvfile) writer.writerow(["labels", "prediction", "confidence_score", "file_name"]) image_dir = "/media/goerlab/My Passport/Welder_detection/dataset/20180109/Data/val/" cnt = 0 for dirc in os.listdir(image_dir): subdir = image_dir + dirc + '/' if not os.path.isfile(subdir): for subdirc in os.listdir(subdir): file_name = subdir + subdirc print(file_name) file_image = data_utils.load_image(file_name) file_image = data_utils.resize_image(file_image, 448, 448) #file_image=cv2.imread(file_name) #file_image=cv2.resize(file_image,(448,448)) #file_image=file_image*(1./255)-0.5 trans_image = np.asarray(file_image).reshape((1, 448, 448, 3)) #trans_image=trans_image(1./255)-0.5 real_predict, real_fc3l, real_confidence_score = sess.run( [prediction, vgg.fc3l, confidence_score], feed_dict={imgs: trans_image}) #writer.writerow([str(dirc),real_predict[0],real_proba[0],file_name]) # print(trans_image) real_label = int(dirc) print("label:%d, prediction:%d, confidence score:%f" % (real_label, real_predict, real_confidence_score))
cnt=0 print("here") for root,dirs,files in os.walk(image_dir): print(root) for i in files: print("file:%s" % (i)) filename=os.path.splitext(i) if filename[1]=='.bmp': image_file=root+"/"+i real_label=0 #file_name=image_dir+dirc print(image_file) file_image=data_utils.load_image(image_file) croped=crop_image(file_image) file_image=data_utils.resize_image(croped,448,448) #file_image=cv2.imread(file_name) #file_image=cv2.resize(file_image,(448,448)) #file_image=file_image*(1./255)-0.5 trans_image=np.asarray(file_image).reshape((1,448,448,3)) #trans_image=trans_image(1./255)-0.5 real_predict,real_fc3l,real_confidence_score,top1_out,top2_out=sess.run([prediction,vgg.fc3l,confidence_score,top1,top2],feed_dict={imgs:trans_image}) #writer.writfor i in files: print("file:%s" % (i)) filename=os.path.splitext(i) if filename[1]=='.bmp': image_file=root+"/"+i