X, Y, testX, testY = mnist.load_data(one_hot=True) elif jdata.model == "cifar10": # input 1024 - output 10 print("https://www.cs.toronto.edu/~kriz/cifar.html") from tflearn.datasets import cifar10 (X, Y), (testX, testY) = cifar10.load_data() X, Y = shuffle(X, Y) Y = to_categorical(Y) testY = to_categorical(testY) X = shapeToOneD(X) Y = shapeToOneD(Y) testX = shapeToOneD(testX) testY = shapeToOneD(testY) elif jdata.model == "cifar100": # input 1024 - output 100 print("https://www.cs.toronto.edu/~kriz/cifar.html") from tflearn.datasets import cifar100 (X, Y), (testX, testY) = cifar100.load_data() elif jdata.model == "oxflower17.py": # input 50176 - output 17 print("http://www.robots.ox.ac.uk/~vgg/data/flowers/17/") from tflearn.datasets import oxflower17 (X, Y) = oxflower17.load_data() elif jdata.model == "svhn": # input 1024 - output 10 print("http://ufldl.stanford.edu/housenumbers") from tflearn.datasets import svhn X, Y, testX, testY = svhn.load_data() else: sys.exit(1) # Building deep neural network net = tflearn.input_data(shape=[None, inputlayer], name='input') modelFilename = ""
from __future__ import division, print_function, absolute_import import tflearn from tflearn.data_utils import shuffle, to_categorical from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.estimator import regression from tflearn.data_preprocessing import ImagePreprocessing from tflearn.data_augmentation import ImageAugmentation from tflearn.datasets import cifar100 (X, Y), (X_test, Y_test) = cifar100.load_data() X, Y = shuffle(X, Y) Y = to_categorical(Y, 100) Y_test = to_categorical(Y_test, 100) img_prep = ImagePreprocessing() img_prep.add_featurewise_zero_center() img_prep.add_featurewise_stdnorm() img_aug = ImageAugmentation() img_aug.add_random_flip_leftright() img_aug.add_random_rotation(max_angle=25.) network = input_data(shape=[None, 32, 32, 3], data_preprocessing=img_prep, data_augmentation=img_aug) network = conv_2d(network, 32, 3, activation='relu') network = max_pool_2d(network, 2) network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu')
import tflearn from tflearn.data_utils import shuffle, to_categorical from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.normalization import batch_normalization as batch_norm from tflearn.layers.estimator import regression from tflearn.data_preprocessing import ImagePreprocessing from tflearn.data_augmentation import ImageAugmentation from tflearn import optimizers import tensorflow as tf import numpy as np # Data loading and preprocessing from tflearn.datasets import cifar100 (X, Y), (X_test, Y_test) = cifar100.load_data(dirname='../cifar-100-python') X, Y = shuffle(X, Y) #Y = to_categorical(Y, 100) #Y_test = to_categorical(Y_test, 100) num_classes = 100 print('X', X.shape) print('Y', Y.shape) Y_test = np.array(Y_test) train_ind = np.load('train-ind.pkl') val_ind = np.load('val-ind.pkl') print('train ind', train_ind.shape) print('val ind', val_ind.shape) num_train = len(train_ind)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #tensoflow 1.x 版本 from __future__ import division, print_function, absolute_import import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tflearn import numpy as np from tflearn.layers.conv import conv_2d #cifar-10数据集下载 from tflearn.datasets import cifar100 (x, y), (testx, testy) = cifar100.load_data() #cifar10数据集进行噪声添加 x = x + np.random.random((50000, 32, 32, 3)) * 0.1 testx = testx + np.random.random((10000, 32, 32, 3)) * 0.1 #cifar10数据集中标签转换 y = tflearn.data_utils.to_categorical(y, 100) testy = tflearn.data_utils.to_categorical(testy, 100) def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2, activation='relu',