コード例 #1
0
 def test_get_config(self, random_onehot_rbf_vectors, random_features_and_targets):
     _, *point_cloud = random_onehot_rbf_vectors
     features, targets = random_features_and_targets
     conv = layers.Convolution()
     _ = conv(list(point_cloud) + list(features))
     config = conv.get_config()
     assert config["trainable"] is True and config["si_units"] == 16
コード例 #2
0
    def test_custom_radial(
        self, random_onehot_rbf_vectors, random_features_and_targets
    ):
        class MyRadial(layers.DenseRadialFactory):
            def __init__(self, num_units, **kwargs):
                super().__init__()
                self.num_units = num_units

            def get_radial(self, feature_dim, input_order=None, filter_order=None):
                return Dense(feature_dim)

            @classmethod
            def from_json(cls, json_str: str):
                return cls(**json.loads(json_str))

        get_custom_objects().update({MyRadial.__name__: MyRadial})
        _, *point_cloud = random_onehot_rbf_vectors
        features, targets = random_features_and_targets
        conv = layers.Convolution(
            radial_factory="MyRadial", factory_kwargs={"num_units": 6}
        )
        _ = conv(list(point_cloud) + list(features))
        config = json.loads(conv.radial_factory.to_json())
        assert config["type"] == "MyRadial"
        assert config["num_units"] == 6
コード例 #3
0
 def test_provided_radial_string(
     self, random_onehot_rbf_vectors, random_features_and_targets
 ):
     _, *point_cloud = random_onehot_rbf_vectors
     features, targets = random_features_and_targets
     conv = layers.Convolution(radial_factory="DenseRadialFactory")
     _ = conv(list(point_cloud) + list(features))
     config = json.loads(conv.radial_factory.to_json())
     assert config["type"] == "DenseRadialFactory"
     assert config["units"] == 32
コード例 #4
0
 def test_provided_radial_string_and_kwargs(
     self, random_onehot_rbf_vectors, random_features_and_targets
 ):
     _, *point_cloud = random_onehot_rbf_vectors
     features, targets = random_features_and_targets
     conv = layers.Convolution(
         radial_factory="DenseRadialFactory",
         factory_kwargs={"num_layers": 3, "units": 4, "kernel_lambda": 0.01},
     )
     _ = conv(list(point_cloud) + list(features))
     config = json.loads(conv.radial_factory.to_json())
     assert config["units"] == 4
コード例 #5
0
 def test_provided_radial_json(
     self, random_onehot_rbf_vectors, random_features_and_targets
 ):
     _, *point_cloud = random_onehot_rbf_vectors
     features, targets = random_features_and_targets
     d = {
         "type": "DenseRadialFactory",
         "num_layers": 3,
         "units": 4,
         "kernel_lambda": 0.01,
     }
     _ = layers.Convolution(radial_factory=json.dumps(d))(
         list(point_cloud) + list(features)
     )
コード例 #6
0
 def test_defaults(self, random_onehot_rbf_vectors, random_features_and_targets):
     _, *point_cloud = random_onehot_rbf_vectors
     features, targets = random_features_and_targets
     output = layers.Convolution()(list(point_cloud) + features)
     assert len(output) == 2