コード例 #1
0
  def _get_default_feed_dict(self, batch, is_training):
    """Reset status if necessary"""
    feed_dict = super()._get_default_feed_dict(batch, is_training)
    assert isinstance(batch, DataSet)

    # (1) If a new sequence begin during training or validation, reset state
    reset_flag = batch.should_reset_state
    if hub.supreme_reset_flag is not None:
      reset_flag = hub.supreme_reset_flag
    if reset_flag:
      self.reset_buffers(batch.size, is_training)
      if is_training and hub.notify_when_reset: console.write_line('- ' * 40)
    # (2) Decrease batch size if necessary
    if batch.active_indices is not None:
      # This signal is set in DataSet.gen_rnn_batches invoked by SequenceSet
      self.decrease_buffer_size(batch.active_indices, is_training)

    # BETA: for parallel engine logic
    if batch.should_partially_reset_state:
      self.reset_part_buffer(batch.reset_batch_indices, batch.reset_values)
      # TODO: to be deprecated
      if hub.notify_when_reset and False:
        if batch.reset_values is not None:
          info = [(i, v) for i, v in zip(
            batch.reset_batch_indices, batch.reset_values)]
        else: info = batch.reset_batch_indices
        console.write_line('{}'.format(info))

    # (3) Set status buffer to status placeholder
    feed_dict.update(self._get_rnn_dict(is_training, batch.size))

    return feed_dict
コード例 #2
0
 def end_round(self, rnd):
     for i, metric in enumerate(self._metrics):
         assert isinstance(metric, Metric) and metric.activated
         if metric.sleep: continue
         console.write_line('Branch {}  {}'.format(i + 1, '- ' * 35))
         metric.end_round(rnd)
     console.write_line('- ' * 40)
コード例 #3
0
ファイル: predictor.py プロジェクト: zkmartin/tsframe
    def _get_default_feed_dict(self, batch, is_training):
        feed_dict = Feedforward._get_default_feed_dict(self, batch,
                                                       is_training)
        if self.master is Recurrent:
            assert isinstance(batch, DataSet)

            # If a new sequence begin while training, reset state
            if is_training:
                if batch.should_reset_state:
                    if hub.notify_when_reset: console.write_line('- ' * 40)
                    self.reset_state(batch.size)
                if batch.should_partially_reset_state:
                    if hub.notify_when_reset:
                        if batch.reset_values is not None:
                            info = [(i, v) for i, v in zip(
                                batch.reset_batch_indices, batch.reset_values)]
                        else:
                            info = batch.reset_batch_indices
                        console.write_line('{}'.format(info))
                    self.reset_part_state(batch.reset_batch_indices,
                                          batch.reset_values)

            batch_size = None if is_training else batch.size
            # If is not training, always set a zero state to model
            feed_dict.update(self._get_state_dict(batch_size=batch_size))

        return feed_dict
コード例 #4
0
ファイル: td_player.py プロジェクト: winkywow/tframe
    def _snapshot(self, progress):
        if self._snapshot_function is None:
            return

        filename = 'train_{}_episode'.format(self.counter)
        fullname = "{}/{}".format(self.snapshot_dir, filename)
        self._snapshot_function(fullname)

        console.clear_line()
        console.write_line("[Snapshot] snapshot saved to {}".format(filename))
        console.print_progress(progress=progress)
コード例 #5
0
ファイル: agent.py プロジェクト: rscv5/tframe
 def show_notes(self):
   console.section('Notes')
   console.write_line(self._note.content)